Stormwater Management Report

For

The Residences at Stow Acres Randall Road Stow, MA

December 12, 2023

Applicant:

Stamski And McNary, Inc.

Engineering - Planning – Surveying 1000 Main Street: Acton, MA 01720 (978) 263-8585

www.stamskiandmcnary.com

MCO & Associates, Inc. P.O. Box 372 Harvard, MA 01451

Table of Contents

Narrative

Stormwater Checklist

Pre-Development Hydrology

Post-Development Hydrology

Groundwater Recharge Calculations

Water Quality Volume Calculations

Groundwater Mounding Calculations

TSS Removal Worksheets

Soil Evaluation

Drainage Maps

Stormwater Operation and Maintenance Manual

Stormwater Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

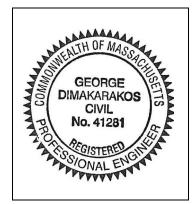
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

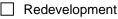
A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Jego))ml


12/15/2023

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

\boxtimes	Soil	Anal	ysis	provided.
-------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Sta

itic 🛛 🖾 Simple Dynamic

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs have bee	n sized to infiltrate the	e Required Recharge '	Volume.
-------------	------------------------	---------------------------	-----------------------	---------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c.	21E site or a solid waste landfill and	a mounding analysis is included.
-------------------------------	--	----------------------------------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

	Checklist	(continued)
--	-----------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The ½" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited P	roject
-----------	--------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Narrative

Stormwater Management Narrative The Residences at Stow Acres December 12, 2023

The project site is located on Randall Road, on a portion of the existing "North Course" of Stow Acres Country Club. The development parcel contains approximately 69 acres. The surface coverage of the site is that of a typical gold course, including grass, paved cart paths, gravel cart paths, sand bunkers, and wooded area. There is Bordering Vegetated Wetland (BVW) around the perimeter of much of the site. The Natural Resource Conservation Service (N.R.C.S.) soil survey report for Middlesex Country indicates the presence of Merrimac fine sandy loam, Hinckley loamy sand, and Deerfield loamy sand, all Hydrologic Soil Group (HSG) A; Scarboro mucky fine sandy loam, of HDG D; and Paxton fine sandy loam and Woodbridge fine sandy loam, both of HSG C.

The proposed project is for the construction of a residential development, consisting of 164 single-family dwellings and one 25-unit apartment building. A series of dead-end alleys are looped roadways are proposed to access the proposed dwellings and, in some instances, their detached garages. A clubhouse area is also proposed to serve the proposed residential community.

Pre-Development

The $69\pm$ ac. site currently contains the "North Course" at Stow Acres Country Club. There is Bordering Vegetated Wetland across the site that projects 100' Buffer Zone onto portions of the property. There is an unnamed stream offsite that projects 200' Riverfront Area onto the southwest corner of the property. The site coverage is primarily grass and wooded area, with gravel and paved cart paths located throughout. The site has been divided into 9 subcatchments, shown on the Pre-Development Drainage Map, and described below.

Subcatchment E-1

Subcatchment E-1A contains the most southeastern portion of the project site and offsite area. This subcatchments divide is drawn coincident to the soil divide where soil in HSG C meets soil in HSG A, because there are wetlands located at the toe of the steeper slopes along the eastern property line. Subcatchment E-1A contains the area that consists of soil in HG C. The vegetative coverage on the project site is primarily lawn and wooded area. Runoff from this subcatchment drains to onsite BVW, through which it is conveyed via culverts towards the BVW located along the western edge of the property.

Subcatchment E-1B is located west of Subcatchment E-1A and contains grass, woods, and some offsite area. Runoff from this subcatchment combines with runoff from Subcatchment E-1A to drain to the nearby BVW, from which it drains to BVW on the west side of the property via a culvert.

Subcatchment E-1C is located along the west side of the property. This subcatchments contains grass, wooded area, and some offsite area. The offsite area draining onto the site in this subcatchment contains a portion of the existing "North Course" that will remain. Runoff from this subcatchments Combines with Subcatchments E-1A and E-1B to drain to the BVW located on the west side of the property.

Subcatchment E-1D is located in the approximate middle of the site and is entirely contained within the development parcel. Runoff from this subcatchment drains to an onsite depression. The drainage analysis demonstrates that this onsite depression does not overflow during the 100-year storm event, however the outflow from this depression would combine with runoff from Subcatchments E-1A, E-1B, and E-1C to drain to the BVW on the west side of the property.

Subcatchment E-2

Subcatchment E-2 is located in the northwest portion of the site and contains grass and wooded area. Runoff from this subcatchment drains to nearby BVW.

Subcatchment E-3

Subcatchment E-3 is located in the northwest portion of the site and contains grass and wooded area. Runoff from this subcatchment drains to the BVW that it surrounds, from which it is conveyed via a culvert to BVW located north of the site.

Subcatchment E-4

Subcatchment E-4 is located in the northeastern portion of the site and contains grass and wooded area. Runoff from this subcatchment drains to the BVW located to the north of the project site.

Subcatchment E-5

Subcatchment E-5 is located in the northeast portion of the side and contains grass and wooded area. Runoff from this subcatchment drains to the abutting property to the north.

Subcatchment E-6

Subcatchment E-6 is located in the northeast portion of the site and contains grass and wooded area. Runoff from this subcatchment drains to BVW that is located onsite. This BVW has been observed overflowing onto the project site towards the depression located within Subcatchment E-1D after sustained periods of intense rainfall. This overflow has not been accounted for in the drainage analysis as it does not appear to be a regular occurrence.

Post Development

The proposed project is for the construction of 164 single family dwellings, a 25-unit apartment building, and associated roadways and parking. A clubhouse area is also proposed to serve the proposed residential community. The attached calculations demonstrate a decrease in peak runoff rates for the 2, 10, 25, and 100 year storms.

Subcatchment P-1

Subcatchment P-1A is located in the northeast corner of the main road loop (Stow Acres Drive) and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to Infiltration Basin 1A (IB-1A), where it will be treated and infiltrated. IB-1A is provided with an overflow that drains to Infiltration Basin 1B (IB-1B).

Subcatchment P-1B is located south of Subcatchment P-1A and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to IB-1B, where it will be treated and infiltrated. IB-1B is provided with an overflow that drains to Infiltration Basin 1C (IB-1C).

Subcatchment P-1C is located south of Subcatchment P-1B and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to IB-1C, where it will be treated and infiltrated. IB-1C is provided with an overflow that drains to Infiltration Basin 1D (IB-1D).

Subcatchment P-1D is located south of Subcatchment P-1C and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to IB-1D, where it will be treated and infiltrated. IB-1D is provided with an overflow that drains to Infiltration Basin 1E (IB-1E).

Subcatchment P-1E is located south of Subcatchment P-1D and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to IB-1E, where it will be treated and infiltrated. IB-1E has been designed to infiltrate the 2, 10, 25, and 100-year design storms. IB-1E is provided with an overflow that drains towards the Bordering Vegetated Wetland located in the southwest corner of the property.

Subcatchment P-1F is located on the west side of the property and contains lawn and pavement area, including a portion of the proposed Stow Acres Drive. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to Infiltration Basin 1F (IB-1F), where it will be treated and infiltrated. IB-1F is provided with an overflow that drains to Infiltration Basin 1G (IB-1G).

Subcatchment P-1G is located south of Subcatchment P-1F and contains lawn and pavement area. Runoff from this subcatchment is collected via a series of deep-sump hooded catch basins and directed to IB-1G, where it will be treated and infiltrated. IB-1G has been designed to infiltrate the 2, 10, and 25-year design storms. IB-1G is provided with an overflow that drains towards the Bordering Vegetated Wetland located in the southwest corner of the property.

Subcatchment P-1H is located in the southern part of the site and contains lawn and pavement area. Runoff from this subcatchments is collected via deep-sump hooded catch basins and direction to the proposed Subsurface Chambers 1H (SC-1H) where it will be treated and infiltrated. SC-1H is designed to infiltrate the 2, 10, and 25-year design storms. SC-1H is provided with an overflow where it will drain to the BVW located southwest of the project site.

Subcatchment P-1I is located in the southern part of the site and contains lawn and pavement area, including a portion of the proposed access drive to serve the proposed clubhouse area. Runoff from this subcatchments is collected via deep-sump hooded catch basins and direction to the proposed Subsurface Chambers 1I (SC-1I) where it will be treated and infiltrated. SC-1H is designed to infiltrate the 2-year design storm. SC-1I is provided with an overflow where it will drain to the BVW located southwest of the project site.

Subcatchment P-1J is located in the southern part of the site and contains lawn, pavement area, and the proposed clubhouse building. Runoff from this subcatchments is collected via deep-sump hooded catch basins and direction to the proposed Subsurface Chambers 1J (SC-1J) where it will be treated and infiltrated. SC-1J is designed to infiltrate the 2-year design storm. SC-1I is provided with an overflow where it will drain to a BVW located in the southern portion of the site.

Subcatchment P-1K near the southwest corner of the site and contains lawn, wooded area, and offsite area. Runoff from this subcatchment drains to BVW located in the south/southeast corner of the project site, where it is conveyed via culverts to the BVW located southwest of the project site.

Subcatchment P-1L is located in the southwest corner of the site and contains lawn area. Runoff from this subcatchment drains to the BVW located in the south/southeast corner of the project site, where it is conveyed via culverts to the BVW located southwest of the project site.

The divide between subcatchments P-1K and P-1L has been drawn along the soil divide. Runoff from these subcatchments combines with the overflow from SC-1J to drain to the onsite BVW located in the southern portion of the site. Runoff is conveyed from these BVW to the BVW located to the southwest of the site.

Subcatchment P-1M is located on the west side of the property and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled towards the BVW located southwest of the project site.

Runoff conveyed via the onsite BVW (SC-1I, P-1K, and P-1L) combines with runoff from IB-1E, IB-1G, SC-1H, SC-1I, and Subcatchment P-1M to compare to pre-development Subcatchment E-1.

Subcatchment P-2

Subcatchment P-2A is located on the west side of the site, north of Subcatchment P-1F. The subcatchment consists of lawn area, pavement, and roof area from 6 proposed single-family dwellings and their respective detached garages. Runoff from this subcatchment is collected via a deep-sump hooded catch basin where it is directed to Subsurface Chambers 2A (SC-2A) where it will be treated and infiltrated. SC-2A has been designed to infiltrate the 2, 10, and 25-year design storms. An overflow is provided to directed excess runoff towards the BVW located to the west of the subcatchment.

Subcatchment P-2B is located to the west of Subcatchment P-2A and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled towards the BVW located to the west. Runoff from this subcatchment combines with the overflow from SC-2A to compare to pre-development Subcatchment E-2.

Subcatchment P-3

Subcatchment P-3A is located in the northern portion of the site and contains lawn area, pavement, and single-family dwellings. Runoff from this subcatchment will be directed to Subsurface Chambers 3A (SC-3A) where it will be treated and infiltrated. SC-3A has been designed to infiltrate the 2, 10, and 25-year design storms. An overflow is provided to directed excess runoff towards the BVW located to the west of the subcatchment.

Subcatchment P-3B is located in the northern portion of the site and contains lawn area, pavement, and single-family dwellings. Runoff from this subcatchment will be directed to Subsurface Chambers 3B (SC-3B) where it will be treated and infiltrated. SC-3A has been designed to infiltrate the 2, 10, and 25-year, and 100-year design storms. An overflow is provided to directed excess runoff towards the BVW located to the west of the subcatchment.

Subcatchment P-3C is located to the west of Subcatchments P-3A and P-3B and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled to an onsite BVW. Runoff from this subcatchment combines with the overflows of SC-3A and SC-3B to compare to Pre-Development Subcatchment E-3.

Subcatchment P-4

Subcatchment P-4A contains the roof area of the northernmost dwelling units, in the cottage area at the rear of the site. Runoff from this subcatchment will be routed to the proposed Roof Drywell 4A (RD-4A), where it will be treated and infiltrated. RD-4A has been designed to infiltrate the 2, 10, 25, and 100-year design storms.

Subcatchment P-4B is located on the north side of the site and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled towards the BVW at the rear of the site. This subcatchment compares to pre-development Subcatchment E-4.

Subcatchment P-5

Subcatchment P-5A contains the roof areas of 6 dwelling units in the cottage area. Runoff from this subcatchment will be routed to the proposed Roof Drywell 5A (RD-5A), where it will be treated and infiltrated. RD-5A is designed to infiltrate the 2, 10, 25, and 100-year design storms.

Subcatchment P-5B is located in the northeast corner of the site and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled towards the rear property line. This subcatchment compares to pre-development Subcatchment E-5

Subcatchment P-6

Subcatchment P-6A is located north of Subcatchment P-1A and contains dwelling roofs, pavement, and lawn area. Runoff from this subcatchment will be routed to the propose Infiltration Basin 6A (IB-6A). IB-6A has been designed to infiltrate the 2, 10, and 25-year design storms.

Subcatchment P-6B is located on the east side of the site and contains lawn and wooded area. Runoff from this subcatchment will flow uncontrolled towards the BVW located along the property line shared with Butternut Farm Golf Club. Combined with the overflow from IB-6A, this subcatchment compares to pre-development Subcatchment E-6.

Roof Drywells are proposed to individually serve many of the proposed buildings. Five of the proposed cottage units at the rear of the site are proposed to be individually served by Roof Drywell A (RD-A). All 51 units on the outside of the Stow Acres Drive loop are proposed to be individually served by Roof Drywell B (RD-B). 53 units on the interior of the Stow Acres Drive loop are proposed to be individually served by Roof Drywell B (RD-C). Roof Drywell E (RD-E) is proposed to serve the proposed multi-family building. Each of these drywells has been designed to fully infiltrate up to the 100-year design storm.

Standards 1 through 10 of the Massachusetts Department of Environmental Protection Stormwater Management Standards have been met. In addition, the system design will not result in a serious flood hazard during the 100-year storm event. The peak runoff rates have been summarized in the following tables.

Compliance with MA DEP Stormwater Management Standards

Compliance with the Stormwater Management Standards is as follows:

Standard 1: No Untreated Discharges

No new untreated discharges to wetlands are proposed. Runoff from the proposed parking lot will be treated via deep-sump hooded catch basins, isolator rows, and subsurface chambers.

Standard 2: Peak Rate Attenuation

The Post-Development peak discharge rates must not be increased from pre-development rates for the 2-year, 10-year, and 100-year storm events. Also, offsite flood impact from the 100-year storm must not be increased. With a combination of infiltration and detention, the peak runoff rates have been decreased. The peak runoff rates have been summarized in the following tables.

	2-year Storm		10-year Storm		25-year Storm		100-year Storm		
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Peak Flow	22.20	21.31	47.74	46.42	66.71	64.70	101.8	95.68	
(cfs)									
Total Volume	118,877	114,602	249,424	246,554	382,190	339,291	579,643	499,278	
(cf)									

Discharge Summary Tables Total Runoff – Subcatchment 1

Total Runoff – Subcatchment 2									
	2-year Storm		10-year Storm		25-year Storm		100-year Storm		
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Peak Flow	0.000	0.000	0.122	0.059	0.743	0.400	2.758	2.565	
(cfs)									
Total Volume	0.000	0.000	3,189	1,539	8,035	3,878	18,852	10,976	
(cf)									

Total Runoff – Subcatchment 3 2-year Storm 10-year Storm 25-year Storm 100-year Storm Pre Pre Pre Pre Post Post Post Post 0.000 Peak Flow 0.000 0.017 0.014 0.089 0.071 0.784 0.624 (cfs) Total Volume 0.000 0.000 527 419 2,357 1,874 7,324 6,256 (cf)

Total Runoff – Subcatchment 4

	2-year Storm		10-year Storm		25-year Storm		100-year Storm	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Peak Flow (cfs)	0.000	0.000	0.036	0.029	0.214	0.172	1.023	0.820
Total Volume	0.000	0.000	976	782	2,868	2,299	7,348	5,891
(cf)								

Total Runoff – Subcatchment 5

	2-year Storm		10-year Storm		25-year Storm		100-year Storm		
	Pre	Post	Pre	Post	Pre	Post	Pre	Post	
Peak Flow	0.001	0.000	0.085	0.008	0.465	0.172	1.577	0.197	
(cfs)									
Total Volume	6.19	0.000	1,900	215	4,514	542	10,217	1,273	
(cf)									

Total Runoff – Subcatchment 6

	2-year Storm		10-year Storm		25-year Storm		100-year Storm	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Peak Flow	0.000	0.000	0.147	0.051	0.936	0.347	3.484	1.589
(cfs) Total Volume	0.000	0.000	3.815	1,368	9.612	3,695	22,552	9,605
(cf)	0.000	0.000	5,015	1,300	9,012	5,095	22,332	9,005

Standard 3: Stormwater Recharge

The proposed subsurface chambers have been sized to infiltrate the required recharge volume, so there will be no loss of annual recharge to groundwater.

Standard 4: Water Quality

The proposed subsurface chambers have been sized to retain the required water quality volume. Deep-sump hooded catch basins, sediment forebays, and isolator rows are proposed to provide the require pre-treatment. Infiltration Basins and Subsurface Infiltration Chambers have been selected due to the TMDL of the Assabet River associated with Phosphorous.

Standard 5: Land Uses with Higher Potential Pollutant Loads

The site proposed will not contain "land uses with higher potential pollutant loads."

Standard 6: Critical Areas

Much of the site is within Interim Wellhead Protection Areas associated with the proposed water supply. The stormwater management system has been designed to provide the required treatment levels.

Standard 7: Redevelopment

This project is not for redevelopment. This standard would require that the Stormwater Management Standards be met to the extent practicable. The project has been designed to meet all of the standards.

Standard 8: Construction Period Controls

The erosion and sedimentation control measures will be followed in accordance with the requirements of the NPDES Construction General Permit. The project will require coverage under the NPDES Construction General Permit.

Standard 9: Operation and Maintenance Plan

An Operation and Maintenance Plan is included in this report.

Standard 10: Illicit Discharges to Drainage System

An Illicit Discharge Compliance will be provided prior to the discharge of stormwater runoff to the postconstruction stormwater BMP's.

Design Basis

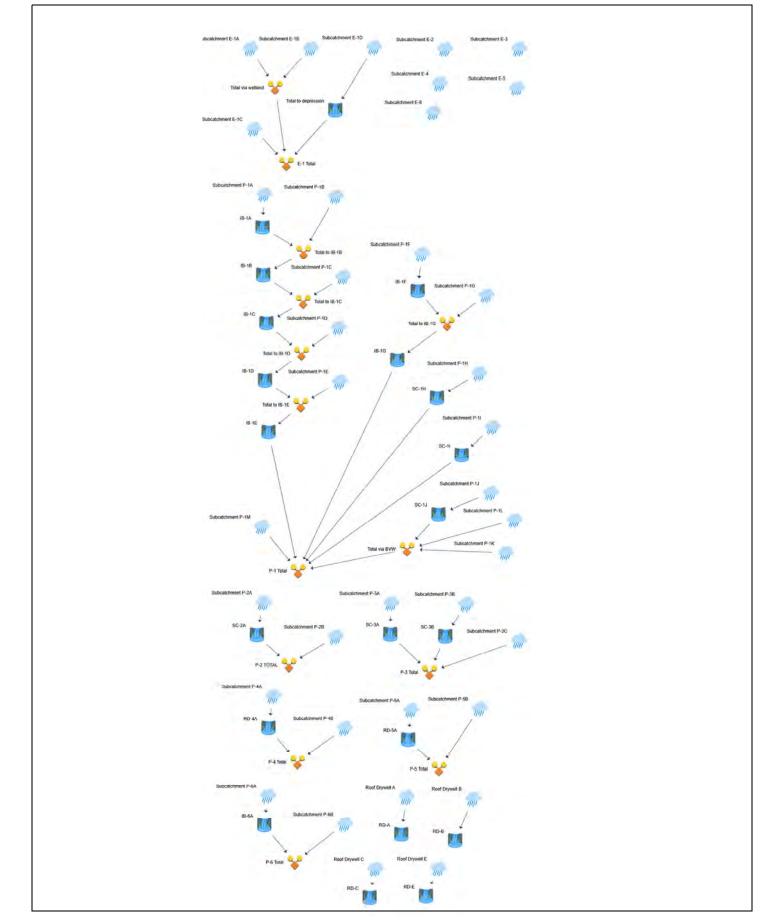
- 1. The United States Department of Agriculture Natural Resource Conservation Service (N.R.C.S.) TR55 methodology was used to determine offsite rates of runoff.
- The twenty-four hour rainfall, taken from the NOAA Atlas, is 7.83 inches for the 100-year storm, 6.12 inches for the 25-year storm, 5.01 inches for the 10-year storm, and 3.23 inches for the 2-year storm event.
- 3. The hydrologic calculations were performed using the computer program: "Hydrology Studio" by Hydrology Studio.
- 4. The soil types of the site were taken from the N.R.C.S. Soil Survey Map for Middlesex County.
- 5. Soil conditions and estimated seasonal high groundwater table were based on on-site soil evaluations.
- 6. The Natural Resource Conservation Service (N.R.C.S.) soil survey report for Middlesex Country indicates the presence of Merrimac fine sandy loam, Hinckley loamy sand, and Deerfield loamy sand, all Hydrologic Soil Group (HSG) A; Scarboro mucky fine sandy loam, of HDG D; and Paxton fine sandy loam and Woodbridge fine sandy loam, both of HSG C.

SUMMARY TABLE

SM-6781

Project:	Stow Acres	By_	PFK	Rev Date	12/12/23
		_			

Location: Stow, MA Checked Date


EX	AREA	CN	TIME OF CONCENTRATION	1
E-1A	25.26	78	27.5	
E-1B	3.82	40	19.9	
E-1C	20.69	39	31.4	
E-1D	5.88	39	17.0	
E-2	5.20	38	17.3	1
E-3	3.32	33	13.3	1
E-4	2.37	36	13.3	1
E-5	2.59	39	18.0	1
E-6	6.38	38	20.2	
TOTAL	75.53			
PROP	AREA	CN	TIME OF CONCENTRATION	
P-1A	1.87	58	6.0	
P-1B	1.49	63	6.0	
P-1C	1.26	60	6.0	
P-1D	1.18	60	6.0	
P-1E	4.34	65	6.0	
RD-E	0.25	98	6.0	
P-1F	5.97	55	6.0	
P-1G	2.61	64	6.0	
P-1H	2.22	61	6.0	
P-1I	0.59	81	6.0	
P-1J	0.62	85	6.0	
P-1K	24.25	78	27.5	
P-1L	2.89	40	16.6	
P-1M	1.90	47	8.9	
P-2A	0.84	70	6.0	
P-2B	2.51	38	8.9	
P-3A	2.87	66	6.0	
P-3B	2.06	68	6.0	
P-3C	2.64	33	13.3	
P-4A	0.26	98	6.0	
P-4B	1.90	36	13.3	1
P-5A	0.13	98	6.0	1
P-5B	0.36	38	13.5	1
P-6A	2.30	54	6.0	1
P-6B	2.91	37	13.7	5 units
RD-A	0.13	98	6.0	51 units
RD-B	2.98	98	6.0	53 units
RD-C	2.18	98	6.0	1
TOTAL	75.53			

Project Name:

12-13-2023

Basin Model

Hydrology Studio v 3.0.0.29

Pre-Development Hydrology

Hydrograph 2-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Subcatchment E-1A	22.20	12.37	118,779			
2	NRCS Runoff	Subcatchment E-1B	0.003	23.90	48.2			
3	Junction	Total via wetland	22.20	12.37	118,827	1, 2		
4	NRCS Runoff	Subcatchment E-1C	0.007	24.00	50.5			
5	NRCS Runoff	Subcatchment E-1D	0.002	24.00	14.0			
6	Pond Route	Total to depression	0.000	0.00	0.000	5	224.00	14.0
7	Junction	E-1 Total	22.20	12.37	118,877	3, 4, 6		
8	NRCS Runoff	Subcatchment E-2	0.000	0.00	0.000			
9	NRCS Runoff	Subcatchment E-3	0.000	0.00	0.000			
10	NRCS Runoff	Subcatchment E-4	0.000	0.00	0.000			
11	NRCS Runoff	Subcatchment E-5	0.001	24.00	6.19			
12	NRCS Runoff	Subcatchment E-6	0.000	0.00	0.000			
14	NRCS Runoff	Subcatchment P-1A	0.359	12.13	2,237			
15	Pond Route	IB-1A	0.000	12.57	0.000	14	228.56	92.2
16	NRCS Runoff	Subcatchment P-1B	0.653	12.10	2,702			
17	Junction	Total to IB-1B	0.653	12.10	2,702	15, 16		
18	Pond Route	IB-1B	0.000	12.43	0.006	17	227.25	379
19	NRCS Runoff	Subcatchment P-1C	0.361	12.10	1,801			
20	Junction	Total to IB-1C	0.361	12.10	1,801	18, 19		
21	Pond Route	IB-1C	0.000	12.40	0.000	20	223.26	231
22	NRCS Runoff	Subcatchment P-1D	0.338	12.10	1,687			
23	Junction	Total to IB-1D	0.338	12.10	1,687	21, 22		
24	Pond Route	IB-1D	0.000	0.00	0.000	23	223.16	171
25	NRCS Runoff	Subcatchment P-1E	2.365	12.10	9,083			
26	Junction	Total to IB-1E	2.365	12.10	9,083	24, 25		
27	Pond Route	IB-1E	0.000	12.03	0.005	26	221.39	1,703
28	NRCS Runoff	Subcatchment P-1F	0.618	12.30	5,277			
29	Pond Route	IB-1F	0.000	12.50	0.000	28	222.06	298
30	NRCS Runoff	Subcatchment P-1G	1.282	12.10	5,091			
31	Junction	Total to IB-1G	1.282	12.10	5,091	29, 30		
32	Pond Route	IB-1G	0.000	12.47	-0.003	31	219.30	794
34	NRCS Runoff	Subcatchment P-1H	0.746	12.10	3,447			
35	Pond Route	SC-1H	0.000	12.70	0.000	34	217.02	34.7
36	NRCS Runoff	Subcatchment P-11	0.000	12.70	2,997		211.02	54.7

Hydrograph 2-yr Summary

	udio v 3.0.0.29		Peak	Time to	Hydrograph	Inflow	Maximum	Maximum
Hyd. No.	Hydrograph Type	Hydrograph Name	Flow (cfs)	Peak (hrs)	Volume (cuft)	Hyd(s)	Elevation (ft)	Storage (cuft)
37	Pond Route	SC-11	0.000	11.07	0.000	36	218.37	1,184
38	NRCS Runoff	Subcatchment P-1J	1.259	12.07	3,763			
39	Pond Route	SC-1J	0.000	11.67	0.000	38	222.22	675
40	NRCS Runoff	Subcatchment P-1K	21.31	12.37	114,029			
41	NRCS Runoff	Subcatchment P-1L	0.002	23.83	37.6			
42	Junction	Total via BVW	21.31	12.37	114,067	39, 40, 41		
43	NRCS Runoff	Subcatchment P-1M	0.020	14.73	535			
44	Junction	P-1 Total	21.31	12.37	114,602 27	, 32, 35, 37, 42,	43	
46	NRCS Runoff	Subcatchment P-2A	0.726	12.07	2,417			
47	Pond Route	SC-2A	0.000	17.37	0.000	46	224.73	376
48	NRCS Runoff	Subcatchment P-2B	0.000	0.00	0.000			
49	Junction	P-2 TOTAL	0.000	17.37	0.000	47, 48		
51	NRCS Runoff	Subcatchment P-3A	1.738	12.07	6,429			
52	Pond Route	SC-3A	0.000	13.17	0.000	51	225.46	416
53	NRCS Runoff	Subcatchment P-3B	1.508	12.07	5,250			
54	Pond Route	SC-3B	0.000	12.93	0.000	53	221.62	519
55	NRCS Runoff	Subcatchment P-3C	0.000	0.00	0.000			
56	Junction	P-3 Total	0.000	12.93	0.000	52, 54, 55		
58	NRCS Runoff	Subcatchment P-4A	0.786	12.07	2,652			
59	Pond Route	RD-4A	0.000	10.73	0.000	58	1.83	464
60	NRCS Runoff	Subcatchment P-4B	0.000	0.00	0.000			
61	Junction	P-4 Total	0.000	10.73	0.000	59, 60		
63	NRCS Runoff	Subcatchment P-5A	0.393	12.07	1,326			
64	Pond Route	RD-5A	0.000	11.53	0.000	63	1.89	244
65	NRCS Runoff	Subcatchment P-5B	0.000	0.00	0.000			
66	Junction	P-5 Total	0.000	11.53	0.000	64, 65		
68	NRCS Runoff	Subcatchment P-6A	0.196	12.33	1,815			
69	Pond Route	IB-6A	0.000	12.33	0.000	68	228.07	97.2
70	NRCS Runoff	Subcatchment P-6B	0.000	0.00	0.000			
71	Junction	P-6 Total	0.000	12.33	0.000	69, 70		

Project Name:

Hydrograph 2-yr Summary

drology St	udio v 3.0.0.29	, , , , , , , , , , , , , , , , , , ,						12-14-20
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
73	NRCS Runoff	Roof Drywell A	0.091	12.07	306			
74	Pond Route	RD-A	0.000	11.40	0.000	73	1.95	53.9
76	NRCS Runoff	Roof Drywell B	0.175	12.07	592			
77	Pond Route	RD-B	0.000	10.60	0.000	76	2.03	106
79	NRCS Runoff	Roof Drywell C	0.121	12.07	408			
80	Pond Route	RD-C	0.000	11.53	0.000	79	1.91	66.3
82	NRCS Runoff	Roof Drywell E	0.756	12.07	2,550			
83	Pond Route	RD-E	0.000	13.67	0.000	82	222.15	485

Hydrograph 10-yr Summary

SC-1H

Subcatchment P-1I

35

36

Pond Route

NRCS Runoff

0.000

2.007

11.63

12.07

0.000

6,012

34

218.04

2,260

Hydrology Studio v 3.0.0.29

iydrology Sti	udio v 3.0.0.29			1			1	
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Subcatchment E-1A	47.74	12.33	249,424			
2	NRCS Runoff	Subcatchment E-1B	0.191	12.60	3,293			
3	Junction	Total via wetland	47.79	12.33	252,718	1, 2		
4	NRCS Runoff	Subcatchment E-1C	0.658	13.07	15,508			
5	NRCS Runoff	Subcatchment E-1D	0.193	12.70	4,313			
6	Pond Route	Total to depression	0.000	0.00	0.000	5	225.01	4,313
7	Junction	E-1 Total	47.83	12.33	268,226	3, 4, 6		
8	NRCS Runoff	Subcatchment E-2	0.122	13.80	3,189			
9	NRCS Runoff	Subcatchment E-3	0.017	16.93	527			
10	NRCS Runoff	Subcatchment E-4	0.036	14.90	976			
11	NRCS Runoff	Subcatchment E-5	0.085	12.70	1,900			
12	NRCS Runoff	Subcatchment E-6	0.147	13.77	3,815			
14	NRCS Runoff	Subcatchment P-1A	2.156	12.07	7,473			
15	Pond Route	IB-1A	0.000	13.90	0.000	14	229.63	1,996
16	NRCS Runoff	Subcatchment P-1B	2.402	12.07	7,683			
17	Junction	Total to IB-1B	2.402	12.07	7,683	15, 16		
18	Pond Route	IB-1B	0.000	13.10	0.012	17	228.36	2,324
19	NRCS Runoff	Subcatchment P-1C	1.681	12.07	5,604			
20	Junction	Total to IB-1C	1.681	12.07	5,604	18, 19		
21	Pond Route	IB-1C	0.000	15.57	-0.002	20	224.50	1,658
22	NRCS Runoff	Subcatchment P-1D	1.574	12.07	5,248			
23	Junction	Total to IB-1D	1.574	12.07	5,248	21, 22		
24	Pond Route	IB-1D	0.000	12.17	0.000	23	224.25	1,494
25	NRCS Runoff	Subcatchment P-1E	7.822	12.07	24,520			
26	Junction	Total to IB-1E	7.822	12.07	24,520	24, 25		
27	Pond Route	IB-1E	0.000	15.17	0.005	26	222.48	7,690
28	NRCS Runoff	Subcatchment P-1F	5.302	12.07	20,010			
29	Pond Route	IB-1F	0.000	12.33	0.000	28	223.06	5,000
30	NRCS Runoff	Subcatchment P-1G	4.455	12.07	14,097			
31	Junction	Total to IB-1G	4.455	12.07	14,097	29, 30		
32	Pond Route	IB-1G	0.000	16.33	-0.004	31	220.43	4,363
34	NRCS Runoff	Subcatchment P-1H	3.166	12.07	10,389			

Project Name:

Hydrograph 10-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
37	Pond Route	SC-11	0.281	12.50	806	36	219.76	2,478
38	NRCS Runoff	Subcatchment P-1J	2.354	12.07	7,126			
39	Pond Route	SC-1J	0.000	11.47	0.000	38	223.22	2,076
40	NRCS Runoff	Subcatchment P-1K	45.83	12.33	239,451			
41	NRCS Runoff	Subcatchment P-1L	0.165	12.50	2,570			
42	Junction	Total via BVW	45.91	12.33	242,021	39, 40, 41		
43	NRCS Runoff	Subcatchment P-1M	0.546	12.20	3,727			
44	Junction	P-1 Total	46.42	12.33	246,554 27	, 32, 35, 37, 42,	43	
46	NRCS Runoff	Subcatchment P-2A	1.924	12.07	5,842			
47	Pond Route	SC-2A	0.000	11.63	0.000	46	226.38	1,882
48	NRCS Runoff	Subcatchment P-2B	0.059	13.70	1,539			
49	Junction	P-2 TOTAL	0.059	13.70	1,539	47, 48		
51	NRCS Runoff	Subcatchment P-3A	5.448	12.07	16,941			
52	Pond Route	SC-3A	0.000	11.77	0.000	51	226.72	4,404
53	NRCS Runoff	Subcatchment P-3B	4.311	12.07	13,227			
54	Pond Route	SC-3B	0.000	12.53	0.000	53	222.96	3,724
55	NRCS Runoff	Subcatchment P-3C	0.014	16.93	419			
56	Junction	P-3 Total	0.014	16.93	419	52, 54, 55		
58	NRCS Runoff	Subcatchment P-4A	1.228	12.07	4,223			
59	Pond Route	RD-4A	0.000	11.27	0.000	58	2.60	1,040
60	NRCS Runoff	Subcatchment P-4B	0.029	14.90	782			
61	Junction	P-4 Total	0.029	14.90	782	59, 60		
63	NRCS Runoff	Subcatchment P-5A	0.614	12.07	2,112			
64	Pond Route	RD-5A	0.000	9.40	0.000	63	2.69	532
65	NRCS Runoff	Subcatchment P-5B	0.008	13.77	215			
66	Junction	P-5 Total	0.008	13.77	215	64, 65		
68	NRCS Runoff	Subcatchment P-6A	1.857	12.10	7,236			
69	Pond Route	IB-6A	0.000	12.47	0.001	68	229.14	1,796
70	NRCS Runoff	Subcatchment P-6B	0.051	14.53	1,368			
71	Junction	P-6 Total	0.051	14.53	1,368	69, 70		

Hydrograph 10-yr Summary

Hyd.	Hydrograph							
No.	Туре	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
73	NRCS Runoff	Roof Drywell A	0.142	12.07	487			
74	Pond Route	RD-A	0.000	10.93	0.000	73	2.80	114
76	NRCS Runoff	Roof Drywell B	0.274	12.07	942			
77	Pond Route	RD-B	0.000	9.13	0.000	76	2.91	230
79	NRCS Runoff	Roof Drywell C	0.189	12.07	650			
80	Pond Route	RD-C	0.000	11.03	0.000	79	2.67	148
82	NRCS Runoff	Roof Drywell E	1.181	12.07	4,061			
83	Pond Route	RD-E	0.000	11.10	0.000	82	222.96	1,051

Project Name:

Hydrograph 25-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Subcatchment E-1A	64.68	12.33	337,902			
2	NRCS Runoff	Subcatchment E-1B	0.842	12.47	7,446			
3	Junction	Total via wetland	65.39	12.33	345,348	1, 2		
4	NRCS Runoff	Subcatchment E-1C	3.082	12.70	36,842			
5	NRCS Runoff	Subcatchment E-1D	1.056	12.50	10,247			
6	Pond Route	Total to depression	0.000	0.00	0.000	5	225.38	10,247
7	Junction	E-1 Total	66.71	12.33	382,190	3, 4, 6		
8	NRCS Runoff	Subcatchment E-2	0.743	12.50	8,035			
9	NRCS Runoff	Subcatchment E-3	0.089	13.80	2,357			
10	NRCS Runoff	Subcatchment E-4	0.214	12.47	2,868			
11	NRCS Runoff	Subcatchment E-5	0.465	12.50	4,514			
12	NRCS Runoff	Subcatchment E-6	0.936	12.47	9,612			
14	NRCS Runoff	Subcatchment P-1A	3.636	12.07	11,659			
15	Pond Route	IB-1A	0.000	15.23	-0.001	14	230.49	3,903
16	NRCS Runoff	Subcatchment P-1B	3.726	12.07	11,463			
17	Junction	Total to IB-1B	3.726	12.07	11,463	15, 16		
18	Pond Route	IB-1B	0.000	15.30	0.006	17	229.04	3,920
19	NRCS Runoff	Subcatchment P-1C	2.729	12.07	8,578			
20	Junction	Total to IB-1C	2.729	12.07	8,578	18, 19		
21	Pond Route	IB-1C	0.000	12.30	0.000	20	225.19	2,889
22	NRCS Runoff	Subcatchment P-1D	2.556	12.07	8,033			
23	Junction	Total to IB-1D	2.556	12.07	8,033	21, 22		
24	Pond Route	IB-1D	0.000	12.40	0.001	23	224.89	2,629
25	NRCS Runoff	Subcatchment P-1E	11.83	12.07	36,022			
26	Junction	Total to IB-1E	11.83	12.07	36,022	24, 25		
27	Pond Route	IB-1E	0.000	14.87	0.008	26	223.16	12,814
28	NRCS Runoff	Subcatchment P-1F	9.654	12.07	32,247			
29	Pond Route	IB-1F	0.000	12.83	-0.001	28	223.87	10,212
30	NRCS Runoff	Subcatchment P-1G	6.820	12.07	20,867			
31	Junction	Total to IB-1G	6.820	12.07	20,867	29, 30		
32	Pond Route	IB-1G	0.000	13.50	-0.003	31	221.12	7,281
34	NRCS Runoff	Subcatchment P-1H	5.055	12.07	15,761			
35	Pond Route	SC-1H	0.000	19.00	0.000	34	218.92	4,679
36	NRCS Runoff	Subcatchment P-1I	2.658	12.07	8,018			

Project Name:

Hydrograph 25-yr Summary

ydrology Sti	udio v 3.0.0.29							12-14-202
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
37	Pond Route	SC-11	1.031	12.23	2,288	36	220.03	2,664
38	NRCS Runoff	Subcatchment P-1J	3.044	12.07	9,317			
39	Pond Route	SC-1J	0.000	8.60	0.000	38	224.00	3,050
40	NRCS Runoff	Subcatchment P-1K	62.09	12.33	324,391			
41	NRCS Runoff	Subcatchment P-1L	0.699	12.37	5,809			
42	Junction	Total via BVW	62.79	12.33	330,200	39, 40, 41		
43	NRCS Runoff	Subcatchment P-1M	1.419	12.13	6,803			
44	Junction	P-1 Total	64.70	12.33	339,291 27	, 32, 35, 37, 42,	43	
46	NRCS Runoff	Subcatchment P-2A	2.765	12.07	8,292			
40	Pond Route	SC-2A	0.000	10.80	0.000	46	227.92	3,165
48	NRCS Runoff	Subcatchment P-2B	0.400	12.37	3,878		221.32	5,105
40	Junction	P-2 TOTAL	0.400	12.37	3,878	47, 48		
45	Junction		0.400	12.57	3,070	47,40		
51	NRCS Runoff	Subcatchment P-3A	8.147	12.07	24,705			
52	Pond Route	SC-3A	0.000	17.40	0.000	51	227.66	8,131
53	NRCS Runoff	Subcatchment P-3B	6.314	12.07	19,021			
54	Pond Route	SC-3B	0.000	13.50	0.000	53	224.03	6,600
55	NRCS Runoff	Subcatchment P-3C	0.071	13.80	1,874			
56	Junction	P-3 Total	0.071	13.80	1,874	52, 54, 55		
58	NRCS Runoff	Subcatchment P-4A	1.503	12.07	5,204			
59	Pond Route	RD-4A	0.000	15.63	0.000	58	3.14	1,422
60	NRCS Runoff	Subcatchment P-4B	0.172	12.47	2,299			
61	Junction	P-4 Total	0.172	12.47	2,299	59, 60		
63	NRCS Runoff	Subcatchment P-5A	0.752	12.07	2,602			
64	Pond Route	RD-5A	0.000	10.53	0.000	63	3.26	721
65	NRCS Runoff	Subcatchment P-5B	0.053	12.47	542		5.20	121
66	Junction	P-5 Total	0.053	12.47	542	 64, 65		
00	buildion		0.000	12.77	042	04,00		
68	NRCS Runoff	Subcatchment P-6A	3.471	12.07	11,802			
69	Pond Route	IB-6A	0.000	12.10	0.001	68	229.90	3,614
70	NRCS Runoff	Subcatchment P-6B	0.347	12.37	3,695			
71	Junction	P-6 Total	0.347	12.37	3,695	69, 70		

Hydrograph 25-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
73	NRCS Runoff	Roof Drywell A	0.173	12.07	600			
74	Pond Route	RD-A	0.000	10.27	0.000	73	3.40	153
76	NRCS Runoff	Roof Drywell B	0.335	12.07	1,161			
77	Pond Route	RD-B	0.000	10.57	0.000	76	3.51	310
79	NRCS Runoff	Roof Drywell C	0.231	12.07	801			
80	Pond Route	RD-C	0.000	10.47	0.000	79	3.19	201
82	NRCS Runoff	Roof Drywell E	1.446	12.07	5,004			
83	Pond Route	RD-E	0.000	11.53	0.000	82	223.51	1,423

Hydrograph 100-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Subcatchment E-1A	91.32	12.33	479,935			
2	NRCS Runoff	Subcatchment E-1B	2.629	12.33	16,313			
3	Junction	Total via wetland	93.95	12.33	496,247	1, 2		
4	NRCS Runoff	Subcatchment E-1C	10.42	12.57	83,396			
5	NRCS Runoff	Subcatchment E-1D	3.580	12.37	23,195			
6	Pond Route	Total to depression	0.000	0.00	0.000	5	226.10	23,195
7	Junction	E-1 Total	101.8	12.33	579,643	3, 4, 6		
8	NRCS Runoff	Subcatchment E-2	2.758	12.37	18,852			
9	NRCS Runoff	Subcatchment E-3	0.784	12.40	7,324			
10	NRCS Runoff	Subcatchment E-4	1.023	12.30	7,348			
11	NRCS Runoff	Subcatchment E-5	1.577	12.37	10,217			
12	NRCS Runoff	Subcatchment E-6	3.484	12.30	22,552			
14	NRCS Runoff	Subcatchment P-1A	6.213	12.07	19,025			
15	Pond Route	IB-1A	0.173	12.83	370	14	231.72	7,319
16	NRCS Runoff	Subcatchment P-1B	5.959	12.07	17,927			
17	Junction	Total to IB-1B	5.959	12.07	18,297	15, 16		
18	Pond Route	IB-1B	0.409	12.53	555	17	229.93	6,752
19	NRCS Runoff	Subcatchment P-1C	4.529	12.07	13,749			
20	Junction	Total to IB-1C	4.529	12.07	14,304	18, 19		
21	Pond Route	IB-1C	0.924	12.40	1,407	20	225.98	4,699
22	NRCS Runoff	Subcatchment P-1D	4.242	12.07	12,876			
23	Junction	Total to IB-1D	4.242	12.07	14,283	21, 22		
24	Pond Route	IB-1D	1.212	12.50	1,525	23	225.84	4,960
25	NRCS Runoff	Subcatchment P-1E	18.52	12.07	55,493			
26	Junction	Total to IB-1E	18.52	12.07	57,018	24, 25		
27	Pond Route	IB-1E	0.000	12.43	0.003	26	224.20	23,170
28	NRCS Runoff	Subcatchment P-1F	17.39	12.07	54,215			
29	Pond Route	IB-1F	1.177	12.57	2,209	28	224.99	19,471
30	NRCS Runoff	Subcatchment P-1G	10.79	12.07	32,386			
31	Junction	Total to IB-1G	10.79	12.07	34,595	29, 30		
32	Pond Route	IB-1G	1.970	12.53	3,951	31	221.93	11,660
34	NRCS Runoff	Subcatchment P-1H	8.281	12.07	25,049			
35	Pond Route	SC-1H	1.857	12.40	3,271	34	220.25	7,499
36	NRCS Runoff	Subcatchment P-1I	3.670	12.07	11,208			

Project Name:

Hydrograph 100-yr Summary

Hyd. No.	udio v 3.0.0.29 Hydrograph	Hydrograph Name	Peak Flow	Time to Peak	Hydrograph Volume	Inflow Hyd(s)	Maximum Elevation	Maximum Storage
NO.	Туре	Name	(cfs)	(hrs)	(cuft)		(ft)	(cuft)
37	Pond Route	SC-1I	2.798	12.13	4,810	36	220.59	2,957
38	NRCS Runoff	Subcatchment P-1J	4.104	12.07	12,764			
39	Pond Route	SC-1J	0.883	12.37	1,054	38	224.98	3,922
40	NRCS Runoff	Subcatchment P-1K	87.67	12.33	460,745			
41	NRCS Runoff	Subcatchment P-1L	2.282	12.23	12,727			
42	Junction	Total via BVW	90.54	12.33	474,525	39, 40, 41		
43	NRCS Runoff	Subcatchment P-1M	3.224	12.13	12,719			
44	Junction	P-1 Total	95.68	12.33	499,278 27	, 32, 35, 37, 42,	43	
46	NRCS Runoff	Subcatchment P-2A	4.131	12.07	12,345			
47	Pond Route	SC-2A	1.275	12.33	1,877	46	229.35	3,958
48	NRCS Runoff	Subcatchment P-2B	1.571	12.17	9,100			
49	Junction	P-2 TOTAL	2.565	12.30	10,976	47, 48		
51	NRCS Runoff	Subcatchment P-3A	12.62	12.07	37,786			
52	Pond Route	SC-3A	0.000	11.23	0.000	51	229.82	15,255
53	NRCS Runoff	Subcatchment P-3B	9.600	12.07	28,693			
54	Pond Route	SC-3B	0.242	12.97	432	53	226.58	11,630
55	NRCS Runoff	Subcatchment P-3C	0.624	12.40	5,824			
56	Junction	P-3 Total	0.624	12.40	6,256	52, 54, 55		
58	NRCS Runoff	Subcatchment P-4A	1.926	12.07	6,716			
59	Pond Route	RD-4A	0.000	11.37	0.000	58	4.20	2,032
60	NRCS Runoff	Subcatchment P-4B	0.820	12.30	5,891			
61	Junction	P-4 Total	0.820	12.30	5,891	59, 60		
63	NRCS Runoff	Subcatchment P-5A	0.963	12.07	3,358			
64	Pond Route	RD-5A	0.000	10.20	0.000	63	4.46	1,023
65	NRCS Runoff	Subcatchment P-5B	0.197	12.30	1,273			
66	Junction	P-5 Total	0.197	12.30	1,273	64, 65		
68	NRCS Runoff	Subcatchment P-6A	6.383	12.07	20,059			
69	Pond Route	IB-6A	0.501	12.53	568	68	230.94	7,073
70	NRCS Runoff	Subcatchment P-6B	1.589	12.10	9,038			
71	Junction	P-6 Total	1.589	12.10	9,605	69, 70		

Project Name:

Hydrograph 100-yr Summary

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
73	NRCS Runoff	Roof Drywell A	0.222	12.07	775			
74	Pond Route	RD-A	0.000	9.43	0.000	73	4.61	214
76	NRCS Runoff	Roof Drywell B	0.430	12.07	1,498			
77	Pond Route	RD-B	0.000	7.90	0.000	76	4.74	438
79	NRCS Runoff	Roof Drywell C	0.296	12.07	1,033			
80	Pond Route	RD-C	0.000	11.37	0.000	79	4.12	286
82	NRCS Runoff	Roof Drywell E	1.852	12.07	6,458			
83	Pond Route	RD-E	0.000	9.93	0.000	 82	224.61	2,025

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-1A	

1. Runoff curve number (CN)

Cover description (cover type, treatment, and		CN 1/			Product of CN x Area
hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
Impervious	98			0.12	12.02
Woods - Good Condition	30			0.00	0.00
Open Space - Good Condition	39			0.00	0.00
Woods - Good Condition	70			2.25	157.74
Open Space - Good Condition	74			2.16	159.70
BVW	77			0.62	47.72
Gravel	76			0.00	0.00
OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
OFFSITE AREA - 1 ACRE LOTS	79			20.11	1588.76
I/ Use only one CN source per line.					
	(cover type, treatment, and hydrologic condition: percent impervious: unconnected/connected impervious area ratio) Impervious Woods - Good Condition Open Space - Good Condition Woods - Good Condition Open Space - Good Condition Open Space - Good Condition BVW Gravel OFFSITE AREA - 1 ACRE LOTS OFFSITE AREA - 1 ACRE LOTS	(cover type, treatment, and hydrologic condition: percent impervious: area ratio)Table 2-2Impervious98Woods - Good Condition30Open Space - Good Condition39Woods - Good Condition70Open Space - Good Condition70Open Space - Good Condition71BVW77Gravel76OFFSITE AREA - 1 ACRE LOTS51OFFSITE AREA - 1 ACRE LOTS79Impervious98	CN 1/ (cover type, treatment, and hydrologic condition: percent impervious: unconnected/connected impervious area ratio) Table 2-2 Fig. 2-3 Impervious 98	(cover type, treatment, and hydrologic condition: percent impervious: area ratio) Table Fig. 2-3 ?id. Impervious 98	CN 1/(cover type, treatment, and hydrologic condition: percent impervious area ratio)Table 2-2Fig. 2-3Fig. 2-4AcresImpervious980.12Woods - Good Condition300.00Open Space - Good Condition390.00Woods - Good Condition700.00Open Space - Good Condition700.00Woods - Good Condition700.00Woods - Good Condition700.00Open Space - Good Condition740.00Woods - Good Condition740.00Open Space - Good Condition740.00Open Space - Good Condition740.00Open Space - Good Condition740.00Open Space - Good Condition760.00Open Space - Good Condition760.00Open Space - Good Condition760.00Open Space - Good Condition760.00Open Space - Good Condition790.00OFFSITE AREA - 1 ACRE LOTS790.00OFFSITE AREA - 1 ACRE LOTS0.00OFFSITE AREA - 1 ACRE LOTS0.00OFFSI

CN (weighted) = total product total area

77.81 ;

Use CN =

78

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

 Runoff, Q......
 in

 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

 Storm #1
 Storm #2
 Storm #3

 yr
 2
 10
 100

 in
 3.23
 5.01
 7.83

 in
 1.28
 2.70
 5.21

=

1965.94 =

25.26

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-1A Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.020 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.29 0.29 Shallow concentrated Flow Segment ID B-C C-D D-E

ft

ft/ft

D-E UNPAVED

0.17

165

0.036

hr

min

UNPAVED UNPAVED

91

0.05

1293

0.023

10. Average Velocity, V (figure 3-1) ft/s 2.45 3.61 3.06 11. Tt = L / 3600V Compute Tt hr 0.15 0.01 0.01 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft 19. Tt = L / 3600V Compute Tt hr

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

7. Surface Description (paved or unpaved)

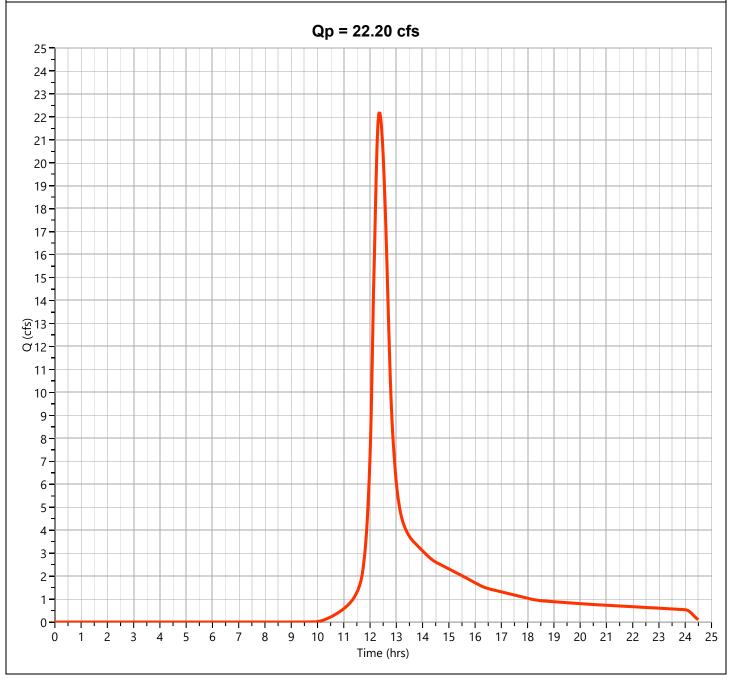
8. Flow Length, L

9. Watercourse slope, s

(210-VI-TR-55, Second Ed., June 1986)

D-3

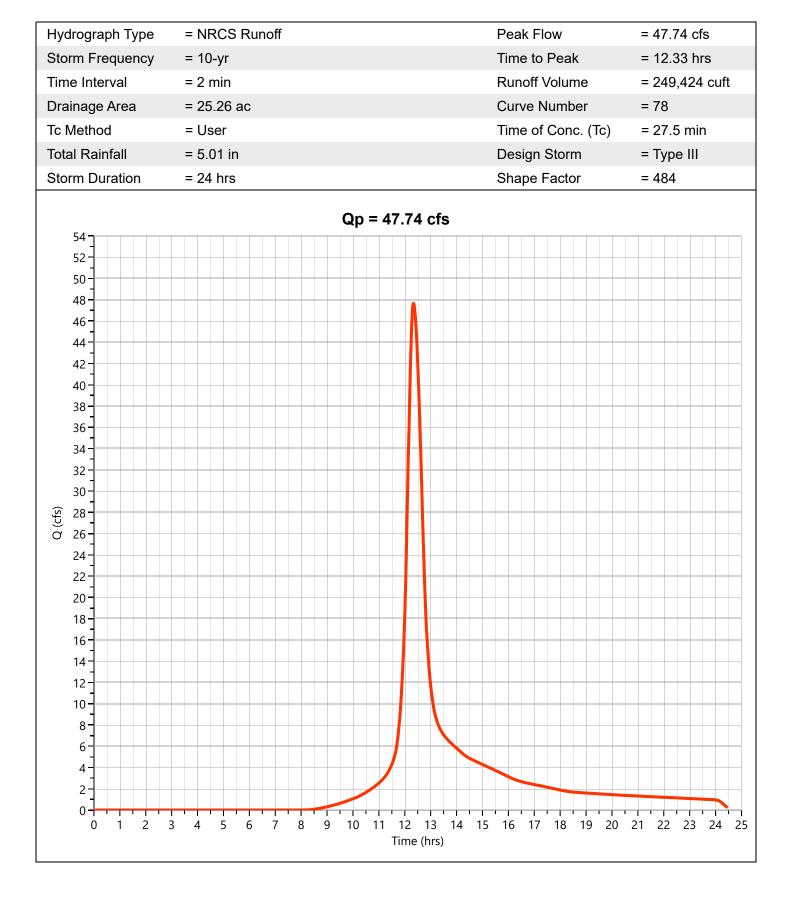
0


0.46 27.5

Hydrology Studio v 3.0.0.29

Subcatchment E-1A

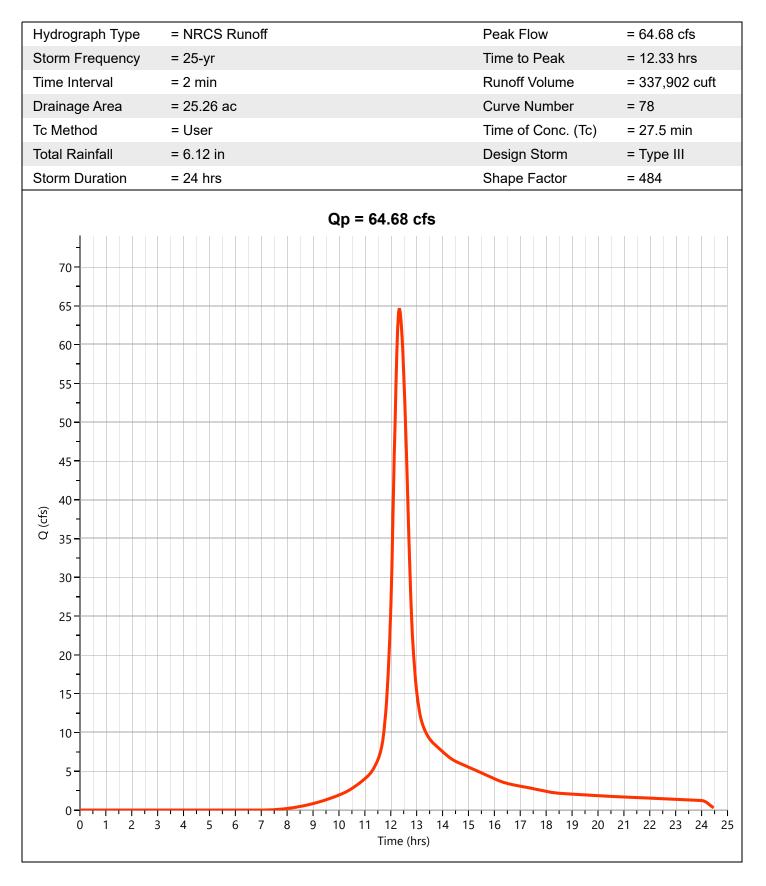
Hydrograph Type Peak Flow = NRCS Runoff = 22.20 cfs Storm Frequency Time to Peak = 12.37 hrs = 2-yr Time Interval = 2 min **Runoff Volume** = 118,779 cuft = 25.26 ac **Curve Number** = 78 **Drainage** Area Tc Method = User Time of Conc. (Tc) = 27.5 min **Total Rainfall** = 3.23 in **Design Storm** = Type III Storm Duration = 24 hrs Shape Factor = 484


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1A

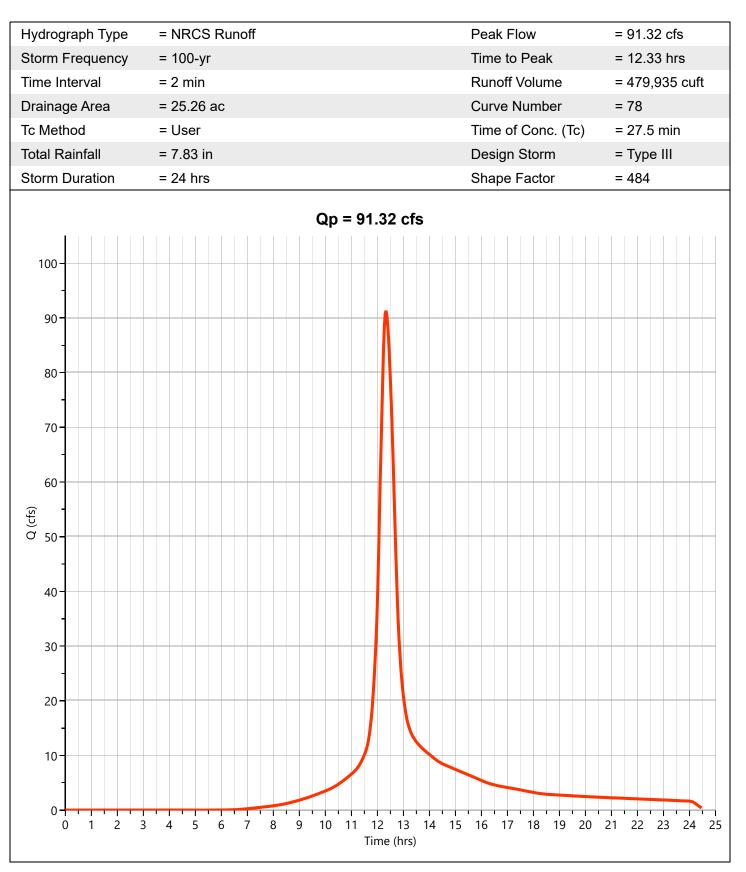
Hyd. No. 1


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1A

12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment E-1A

12-13-2023

Project Name:

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-1B	

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and	CN 1/		Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.01	1.36
A	Woods - Good Condition	30			0.14	4.32
А	Open Space - Good Condition	39			3.36	130.87
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.31	15.83
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one (CN source per line.			Totals =	3.82	152.38

152.38

3.82

Storm #2

10

5.01

0.23

=

Storm #1

2

3.23

0.00

_ =

Storm #3

100

7.83

1.16

39.85 ;

Use CN =

40

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

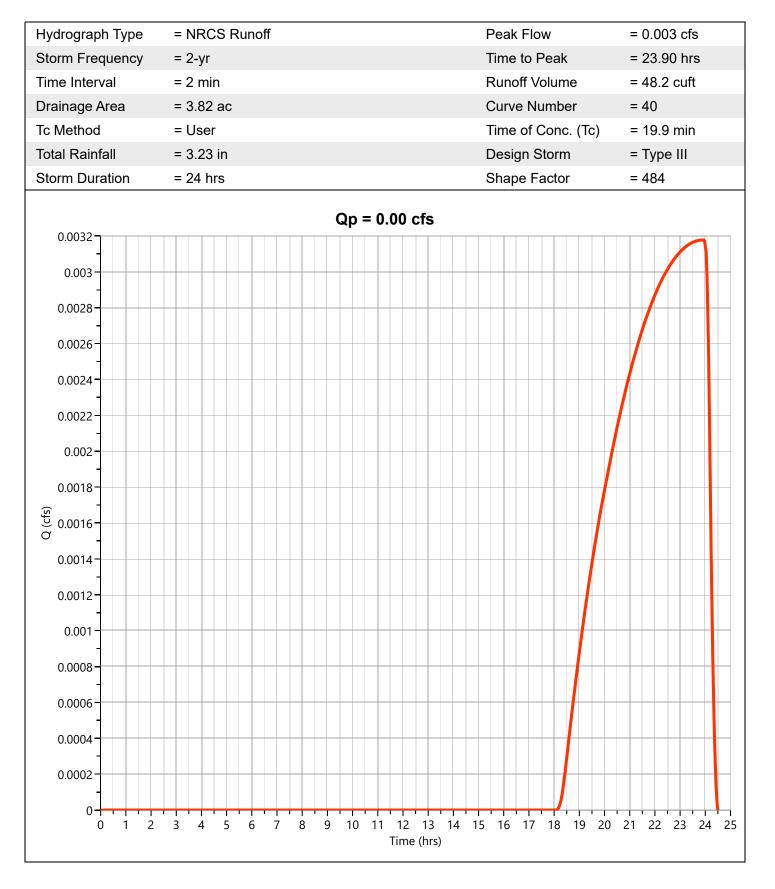
Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-1B Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.050 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.20 0.20 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 998 9. Watercourse slope, s ft/ft 0.017 10. Average Velocity, V (figure 3-1) ft/s 2.10 11. Tt = L / 3600V Compute Tt hr 0.13 0.13 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 0.33

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3

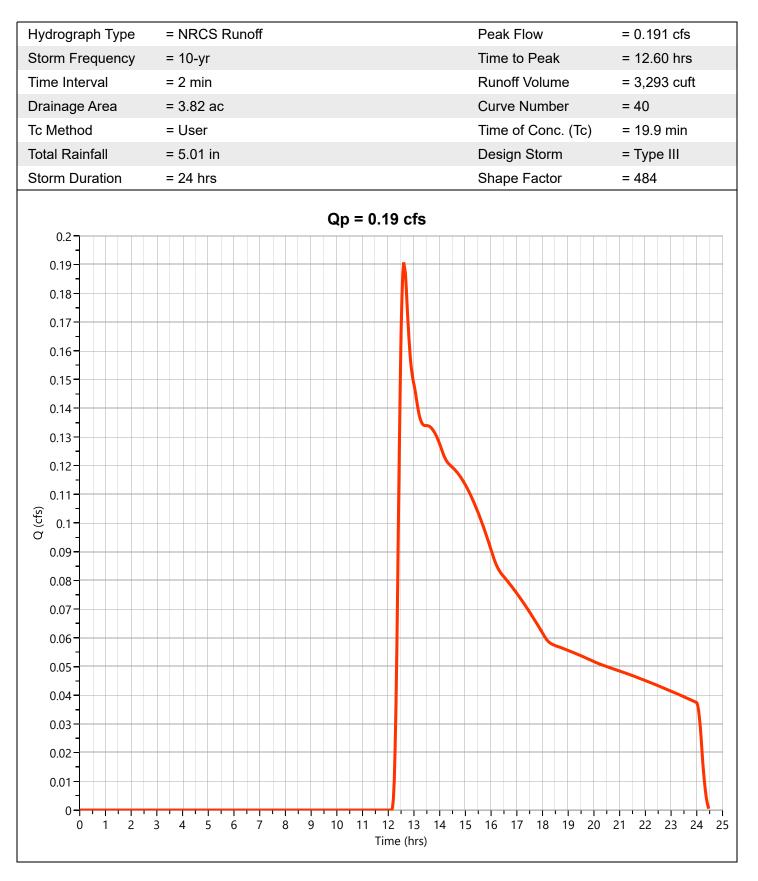
19.9


hr

min

Hydrology Studio v 3.0.0.29

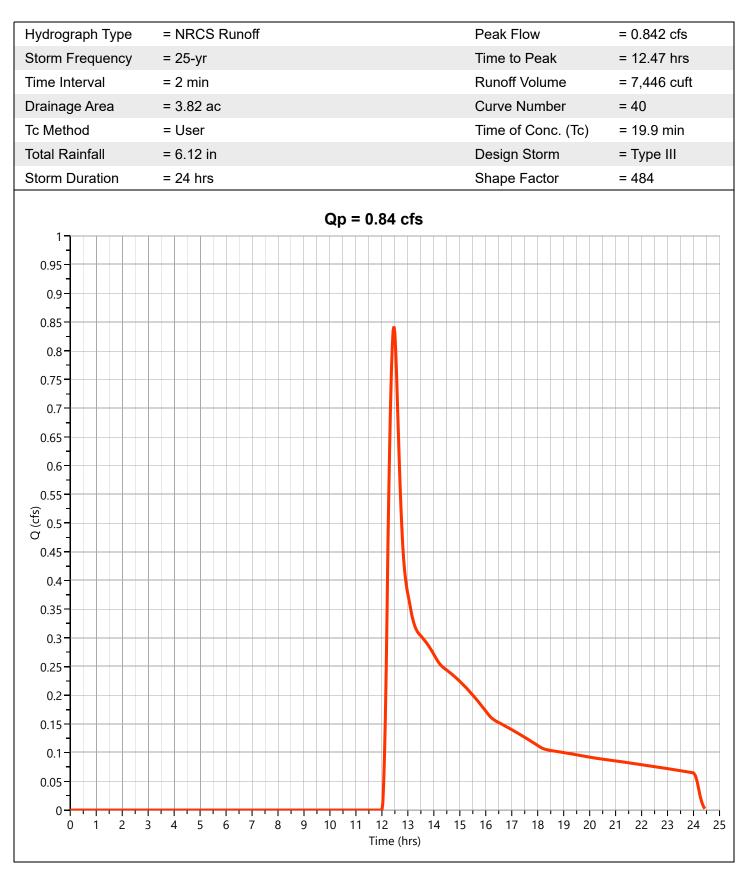
Subcatchment E-1B


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1B

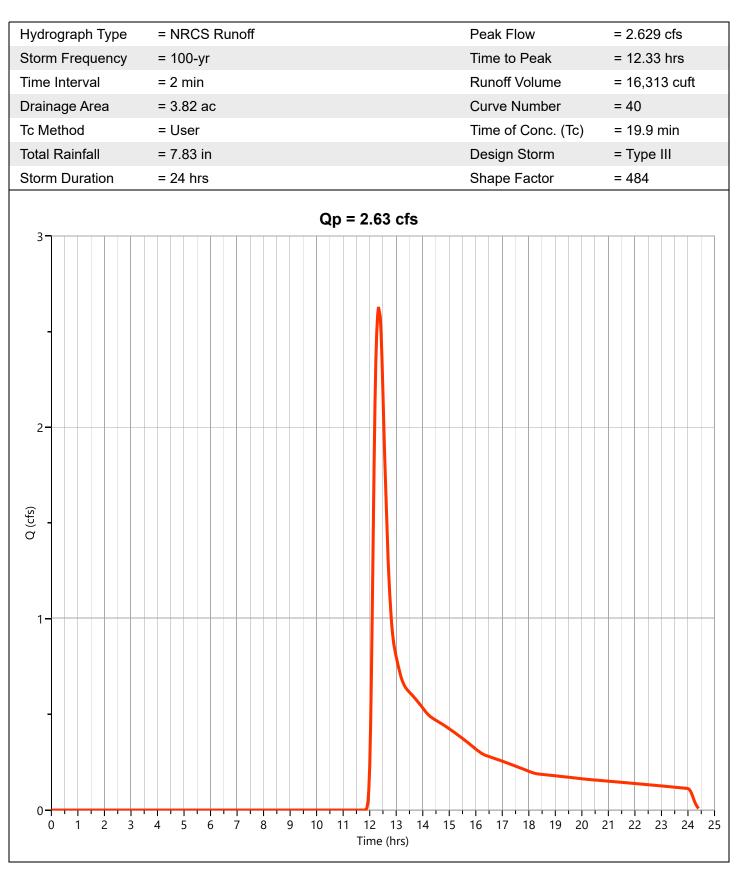
12-13-2023



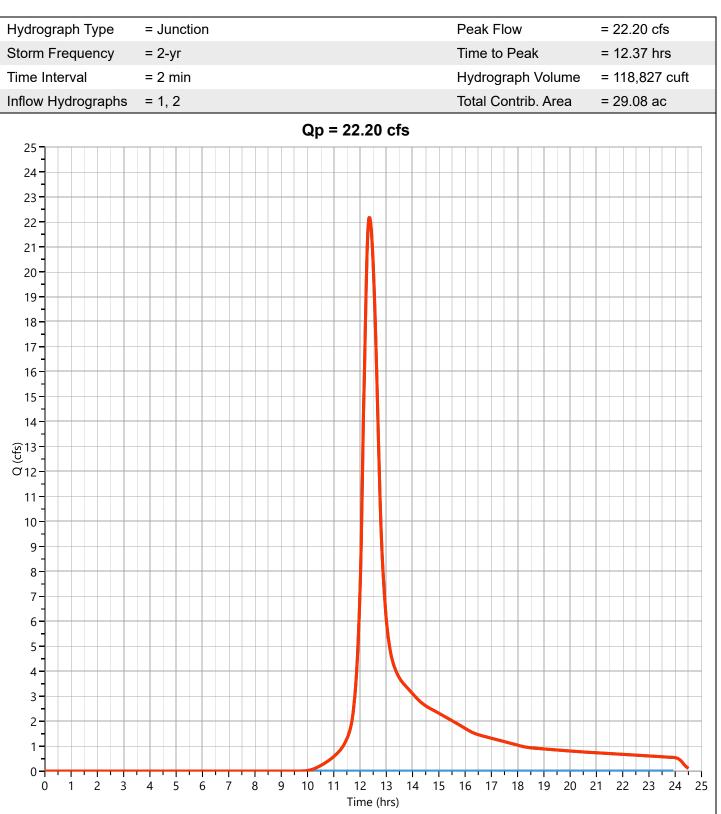
Hydrology Studio v 3.0.0.29

Subcatchment E-1B

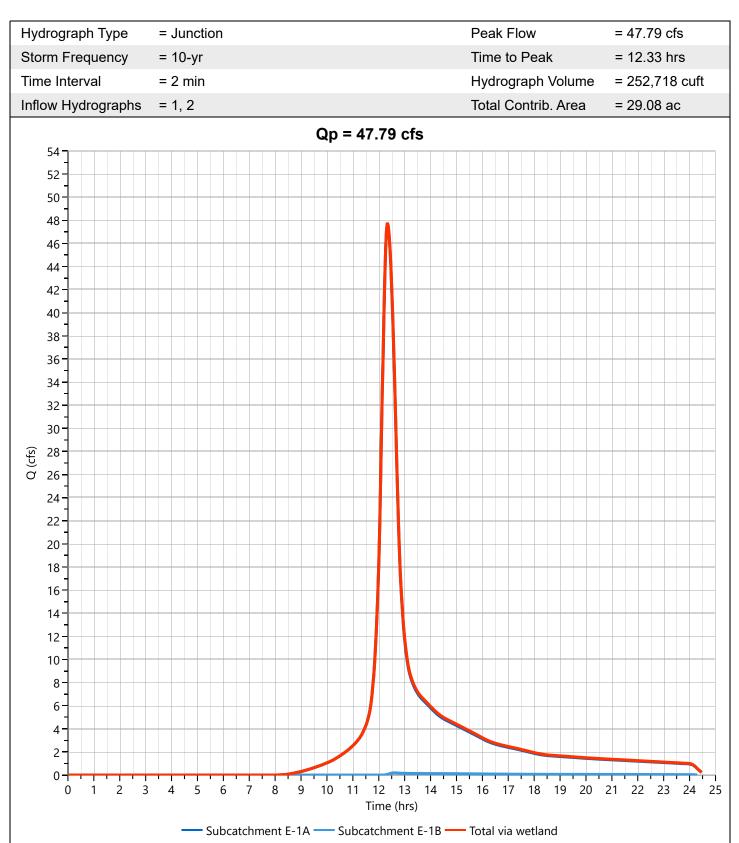
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

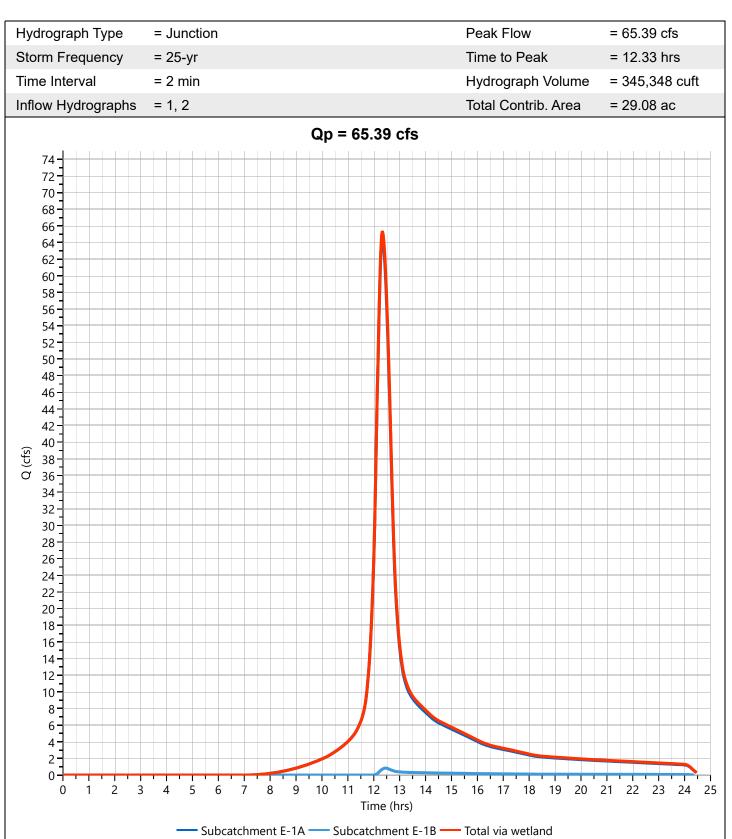

Subcatchment E-1B

12-13-2023


Hydrology Studio v 3.0.0.29

Total via wetland

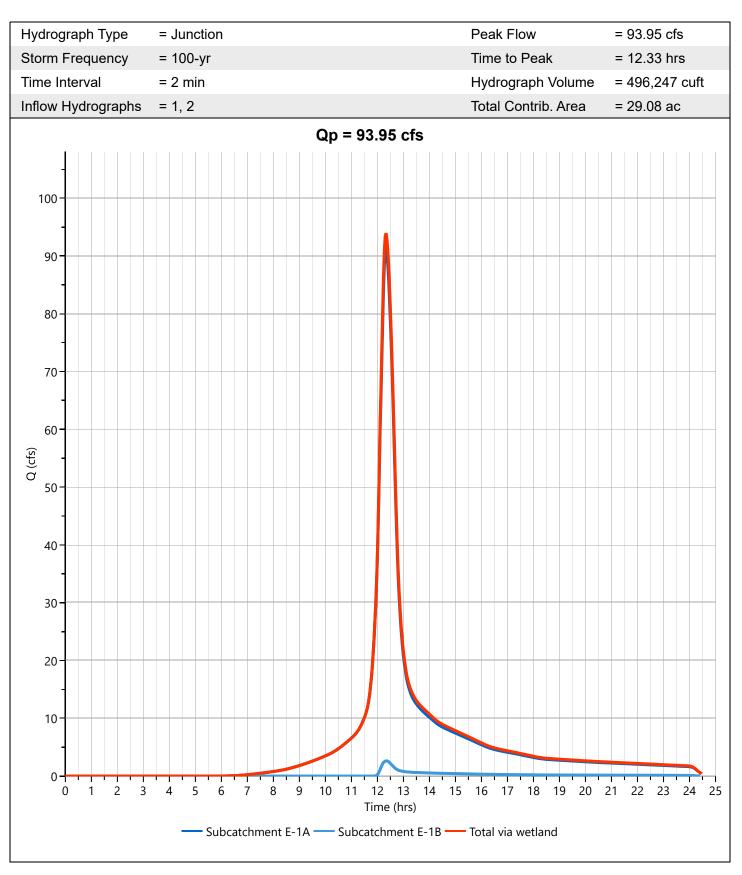
Hydrology Studio v 3.0.0.29


Total via wetland

12-13-2023

Hydrology Studio v 3.0.0.29

Total via wetland


Project Name:

Hydrology Studio v 3.0.0.29

Total via wetland

12-13-2023

Project Name:

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-1C	

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.18	17.64
A	Woods - Good Condition	30			2.32	69.47
A	Open Space - Good Condition	39			18.10	705.92
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.10	7.45
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN so	burce per line.			Totals =	20.69	800.48
CN (weighted	d) = total product = 800.48 =	38.68	; Use	CN =	39]

20.69

Storm #2

10

5.01

0.19

Storm #3

100

7.83

1.06

Storm #1

2

3.23

0.00

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

 Runoff, Q......
 in

 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

total area

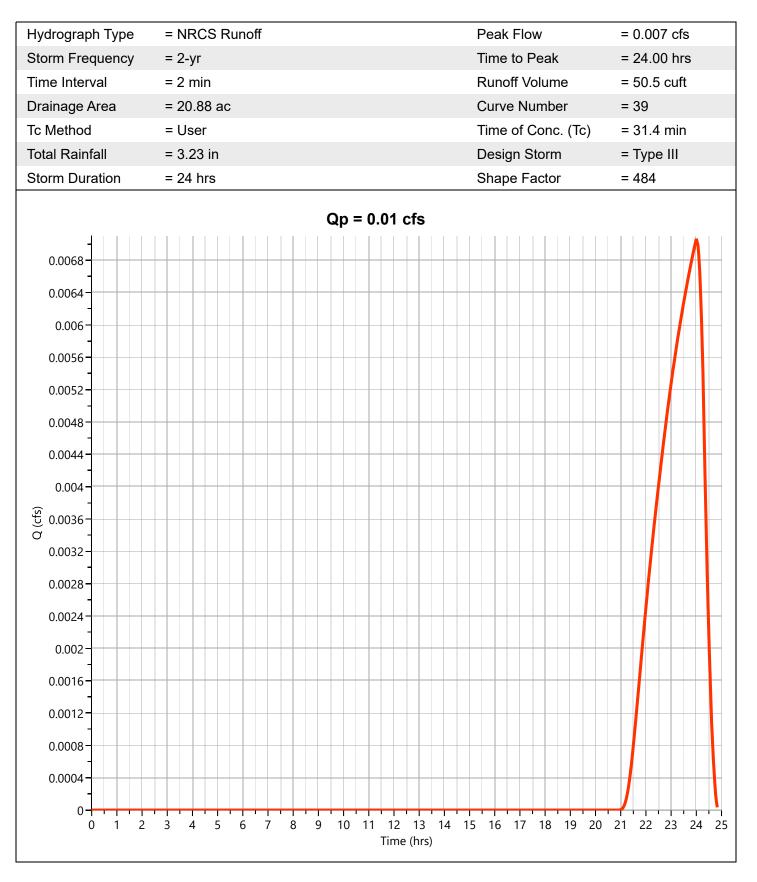
Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-1C Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.040 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.22 0.22 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 1765 9. Watercourse slope, s ft/ft 0.01 10. Average Velocity, V (figure 3-1) ft/s 1.61 0.30 11. Tt = L / 3600V Compute Tt hr 0.30 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3

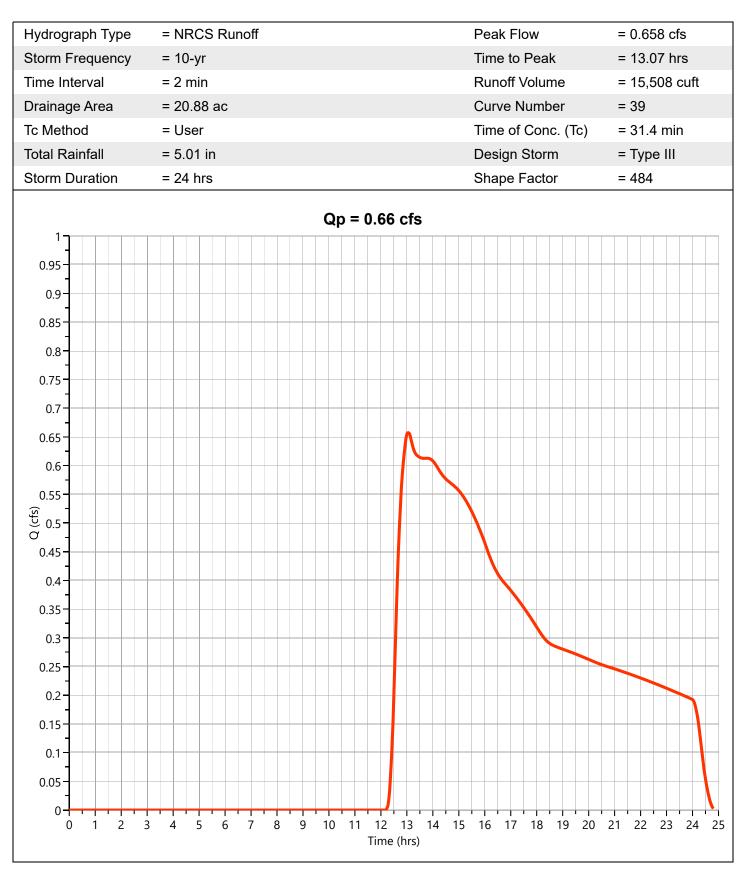
0.52 31.4


hr

min

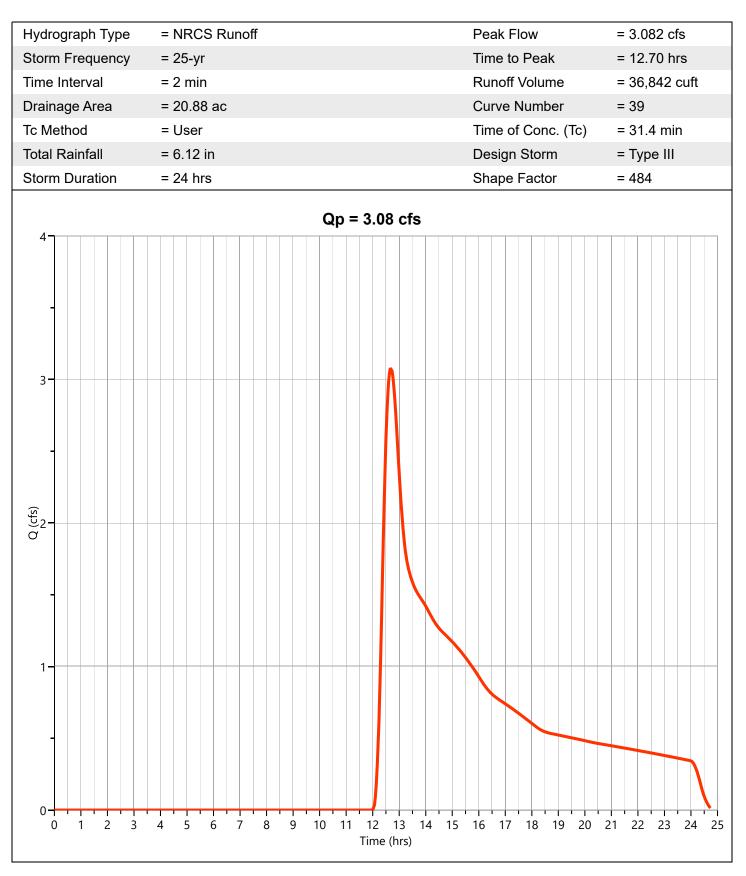
Hydrology Studio v 3.0.0.29

Subcatchment E-1C


12-14-2023

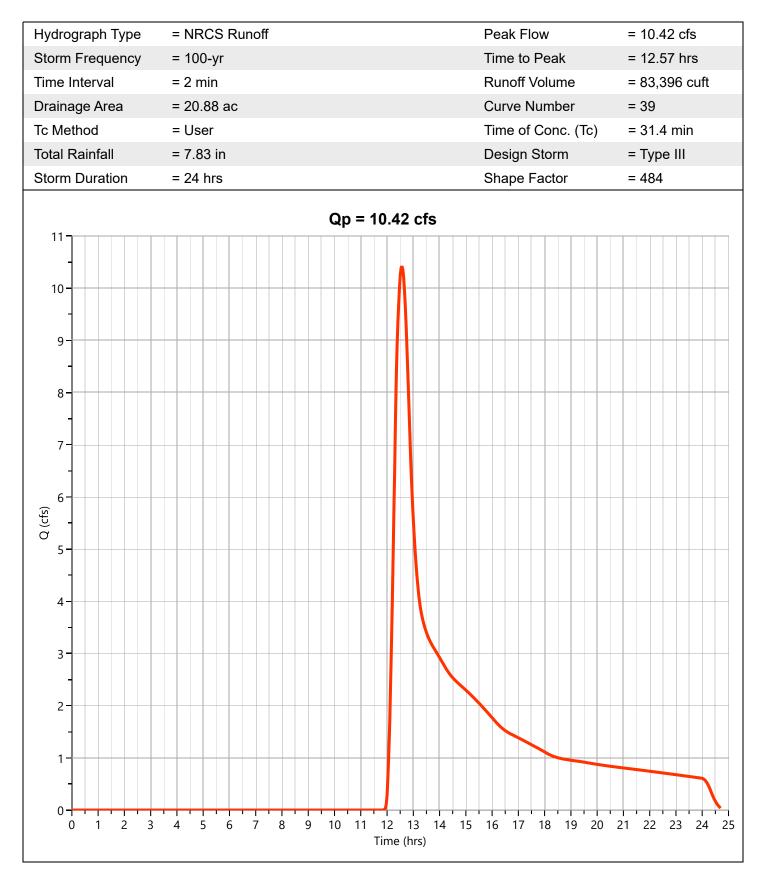
Hydrology Studio v 3.0.0.29

Subcatchment E-1C


12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1C


12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1C

12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-1D	

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
	Impervious	98			0.09	8.34
А	Woods - Good Condition	30			0.30	9.09
A	Open Space - Good Condition	39			5.49	214.14
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one C	CN source per line.			Totals =	5.88	231.57
CN (wei	ighted) = total product = 231.57 = total area 5.88	39.39	; Use	CN =	39]

2. Runoff

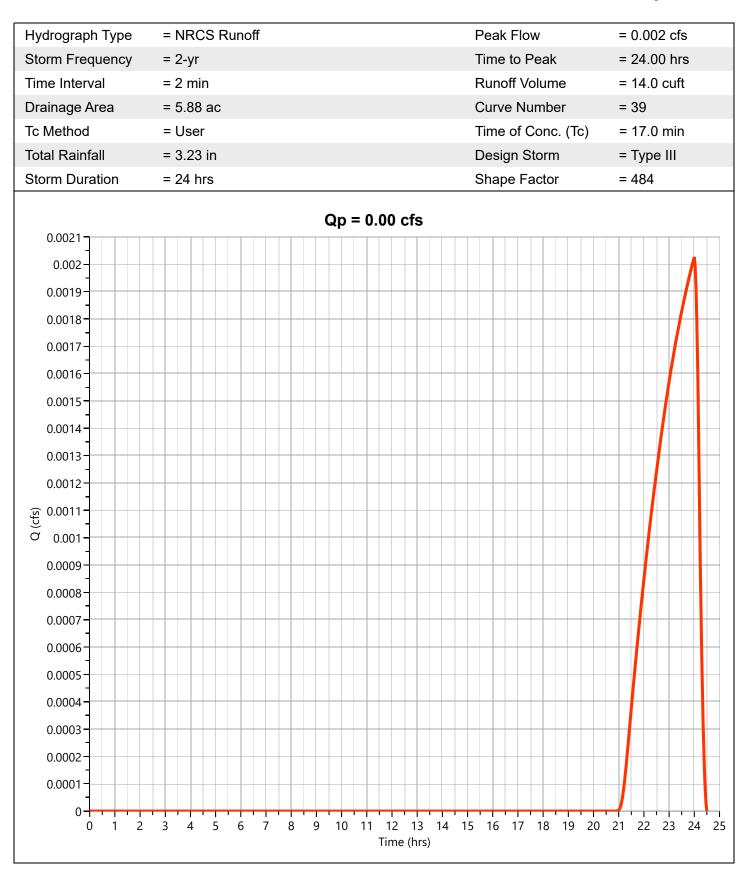
Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Storm #1	Storm #2	Storm #3
2	10	100
3.23	5.01	7.83
0.00	0.22	1.12

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-1D Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Lawn 2. Mannings roughness coeff., n (table 3-1) 0.24 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.010 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.18 0.18 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 581 9. Watercourse slope, s ft/ft 0.01 10. Average Velocity, V (figure 3-1) ft/s 1.61 11. Tt = L / 3600V Compute Tt hr 0.10 0.10 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.28

(210-VI-TR-55, Second Ed., June 1986)

D-3

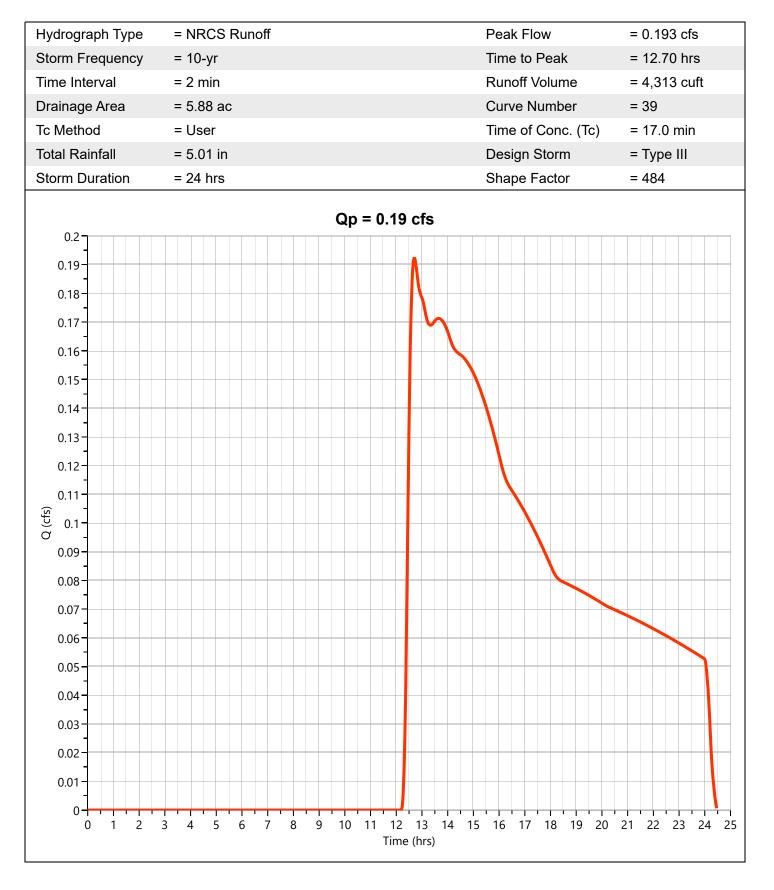

min

17.0

Hydrology Studio v 3.0.0.29

Subcatchment E-1D

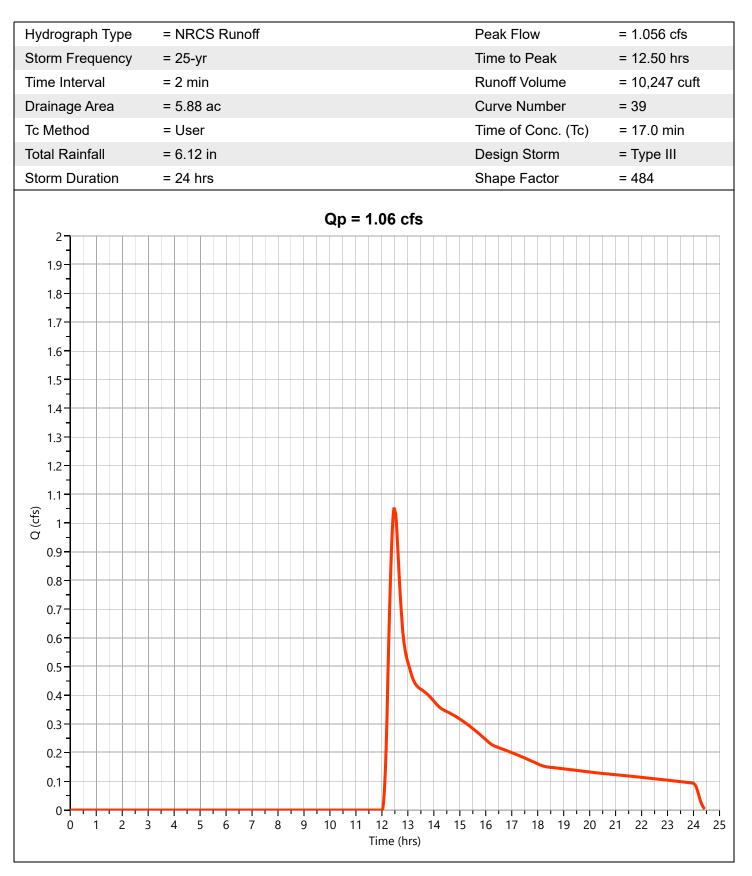
12-14-2023



Hydrology Studio v 3.0.0.29

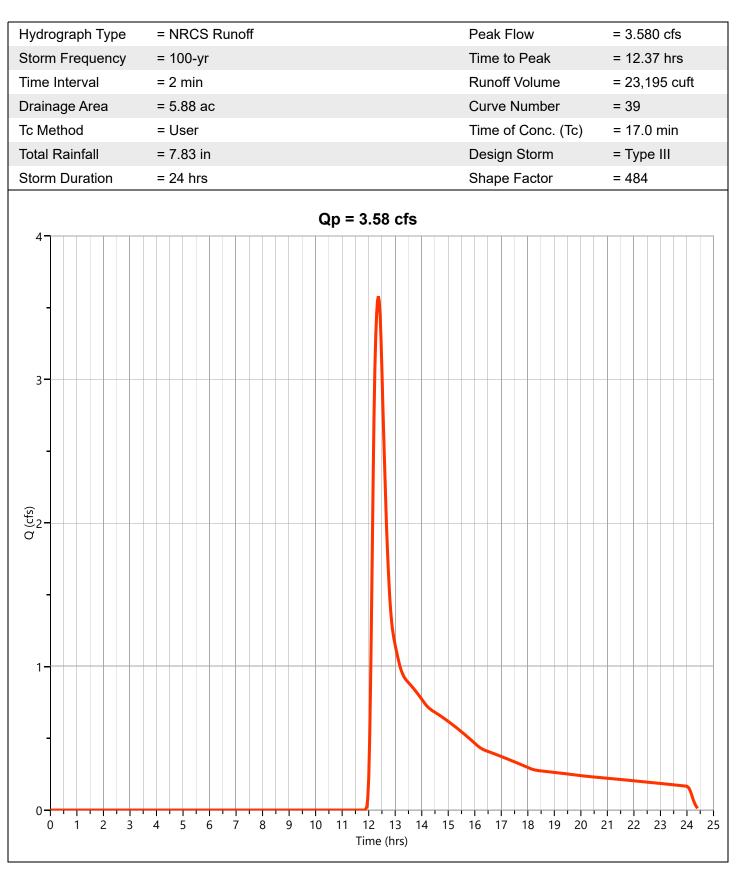
Subcatchment E-1D

12-14-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment E-1D


12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-1D

12-14-2023

Total to depression

1	2-1	4-	202	23

Hyd. No. 6

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 5 - Subcatchment E-1D	Max. Elevation	= 224.00 ft
Pond Name	= Existing Depression	Max. Storage	= 14.0 cuft

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

Total to depression

Hyd. No. 6

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 10-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 5 - Subcatchment E-1D	Max. Elevation	= 225.01 ft
Pond Name	= Existing Depression	Max. Storage	= 4,313 cuft

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

Total to depression

12-14-2023

Hyd. No. 6

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 25-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 5 - Subcatchment E-1D	Max. Elevation	= 225.38 ft
Pond Name	= Existing Depression	Max. Storage	= 10,247 cuft

Pond Routing by Storage Indication Method

Qp = 0.00 cfs

Pond Name

Total to depression

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 100-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 5 - Subcatchment E-1D	Max. Elevation	= 226.10 ft

Max. Storage

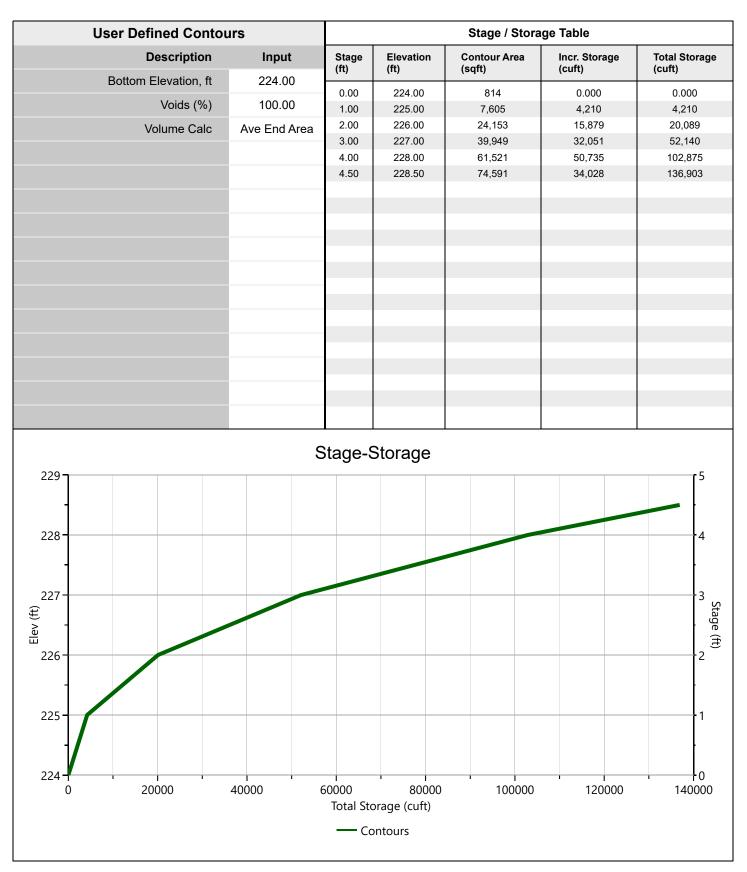
Pond Routing by Storage Indication Method

= Existing Depression

Qp = 0.00 cfs

Project Name:

12-14-2023

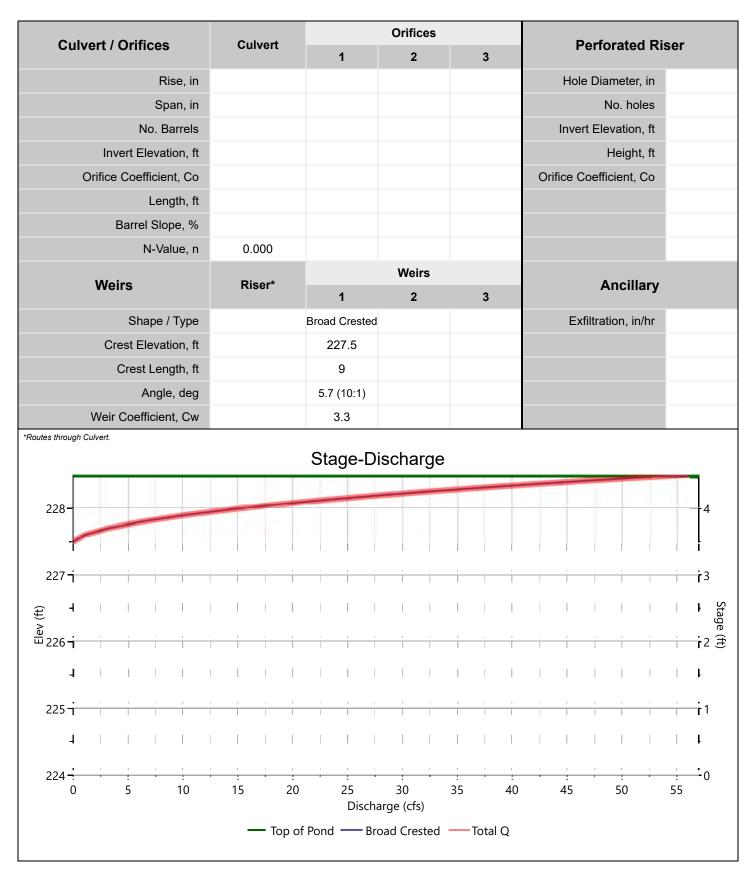

Hyd. No. 6

= 23,195 cuft

Hydrology Studio v 3.0.0.29

Existing Depression

Stage-Storage



12-14-2023

Hydrology Studio v 3.0.0.29

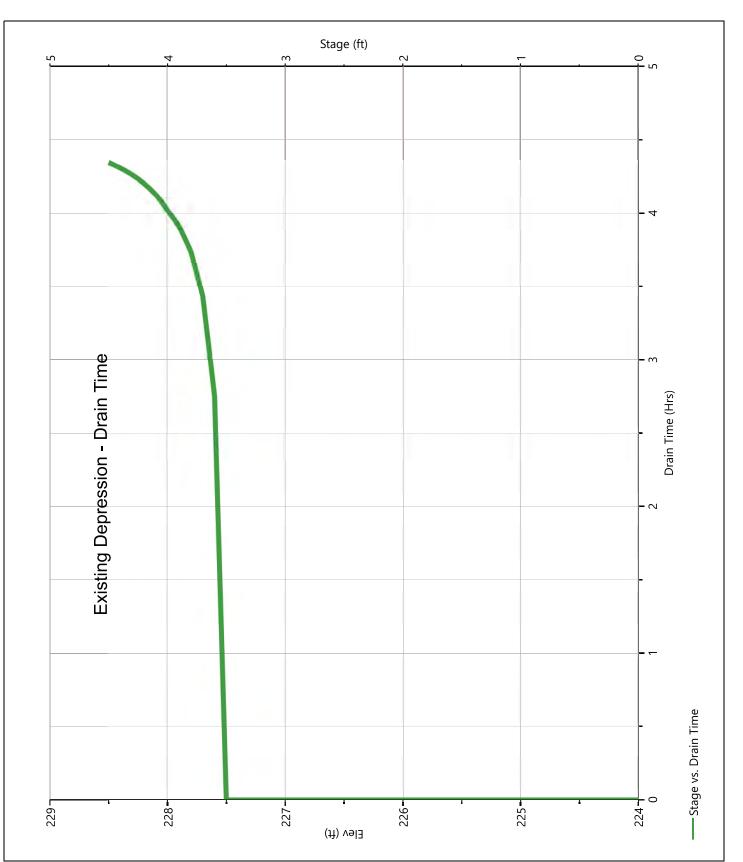
Existing Depression

Stage-Discharge

12-14-2023

Hydrology Studio v 3.0.0.29

Existing Depression


Stage-Storage-Discharge Summary

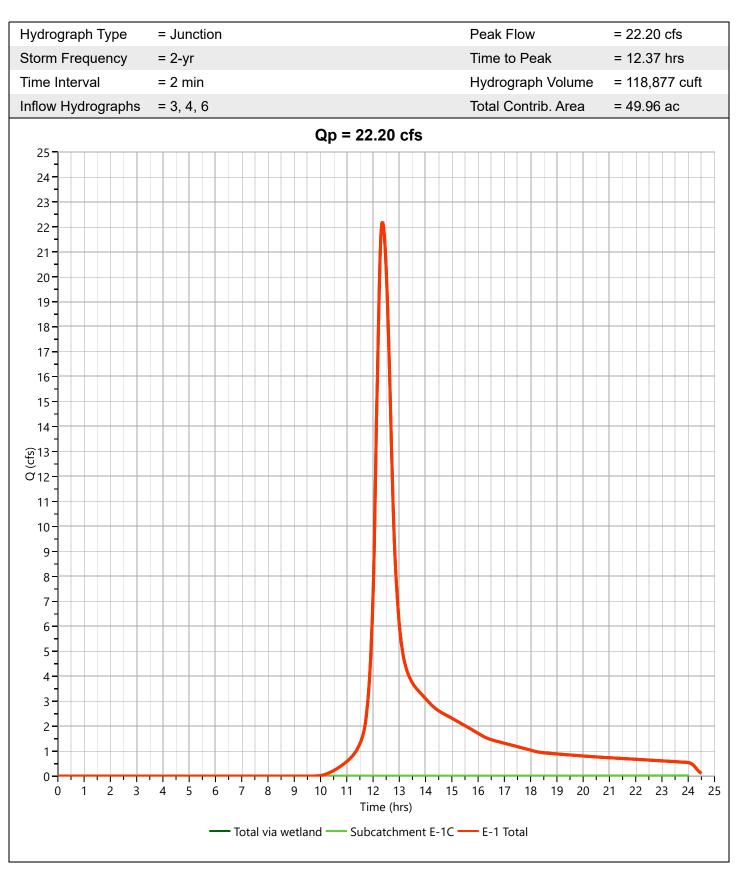
Stage Elev.	Elev.	Storage	torage Culvert	Orifices, cfs		Riser	Weirs, cfs		Pf Riser	Exfil	User	Total		
(ft)	t) (ft) (cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)	
0.00	224.00	0.000						0.000						0.000
1.00	225.00	4,210						0.000						0.000
2.00	226.00	20,089						0.000						0.000
3.00	227.00	52,140						0.000						0.000
4.00 4.50	228.00 228.50	102,875 136,903						15.17 56.10						15.17 56.10

12-14-2023

Hydrology Studio v 3.0.0.29

Existing Depression

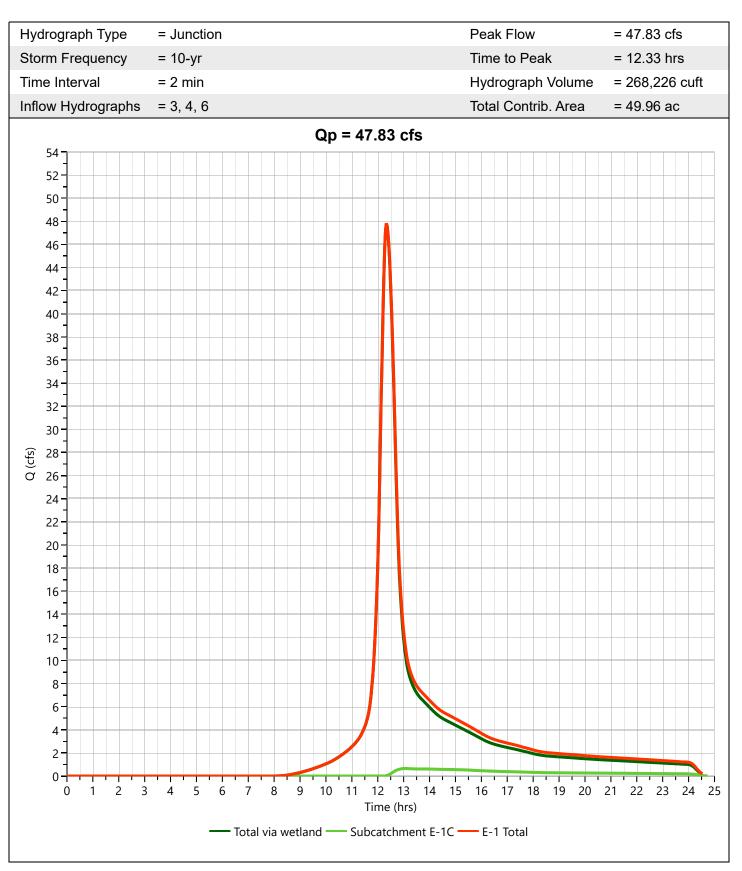
12-14-2023


Pond Drawdown

Hydrology Studio v 3.0.0.29

E-1 Total

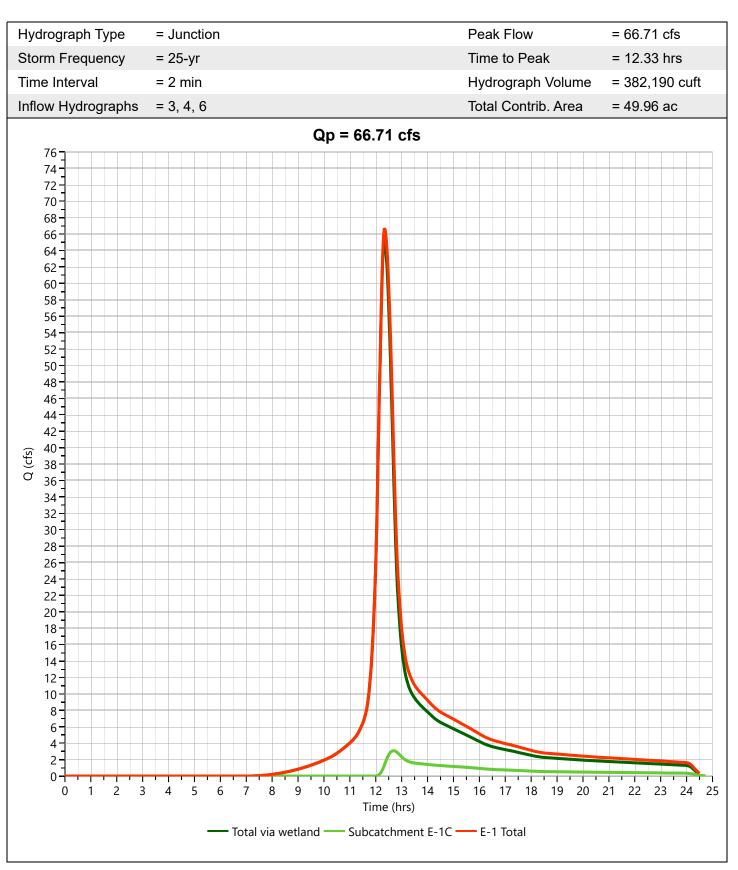
Project Name:



Hydrology Studio v 3.0.0.29

E-1 Total

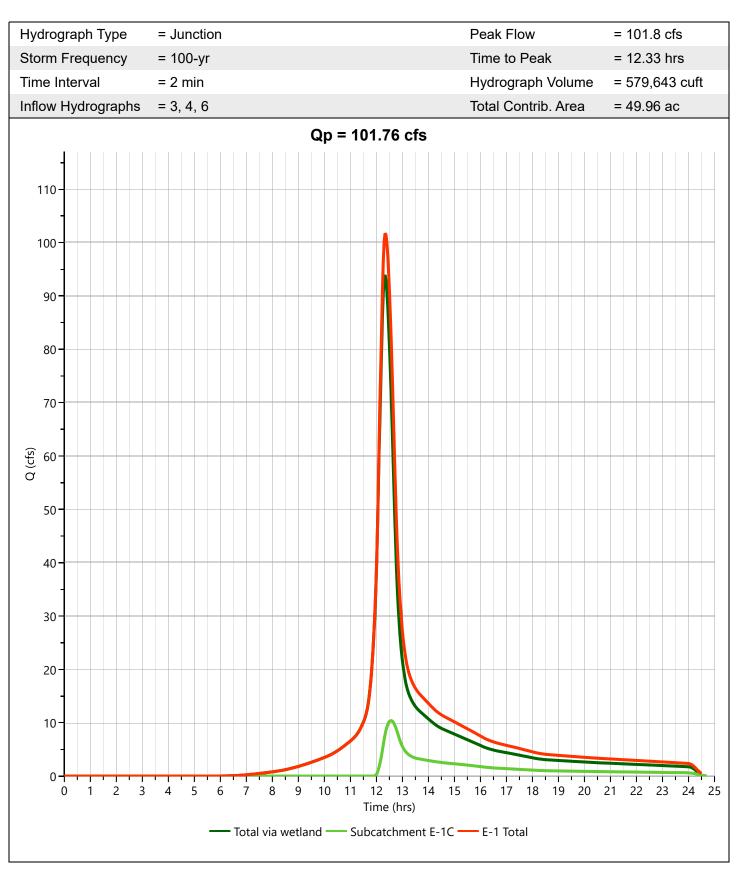
Project Name:



Hydrology Studio v 3.0.0.29

E-1 Total

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

E-1 Total

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-2	

1. Runoff curve number (CN)

Soil name and hydrologic	c (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.07	6.92
А	Woods - Good Condition	30			1.00	29.95
А	Open Space - Good Condition	39			4.13	160.92
с	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.01	0.66
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one Cl	N source per line.			Totals =	5.20	198.46

1<u>98.46</u> =

Storm #3

100

7.83

1.01

5.20

Storm #2

10

5.01

0.17

=

Storm #1

2

3.23

0.00

38.14 ;

Use CN =

38

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-2 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 3.1 in 5. Land Slope, s ft/ft 0.028 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.25 0.25 Shallow concentrated Flow Segment ID B-C C-D 7. Surface Description (paved or unpaved) UNPAVED UNPAVED 8. Flow Length, L ft 249 131 9. Watercourse slope, s 0.025 ft/ft 0.07 10. Average Velocity, V (figure 3-1) ft/s 2.55 4.27 11. Tt = L / 3600V Compute Tt hr 0.03 0.04 0.01 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.29

(210-VI-TR-55, Second Ed., June 1986)

D-3

min

17.3

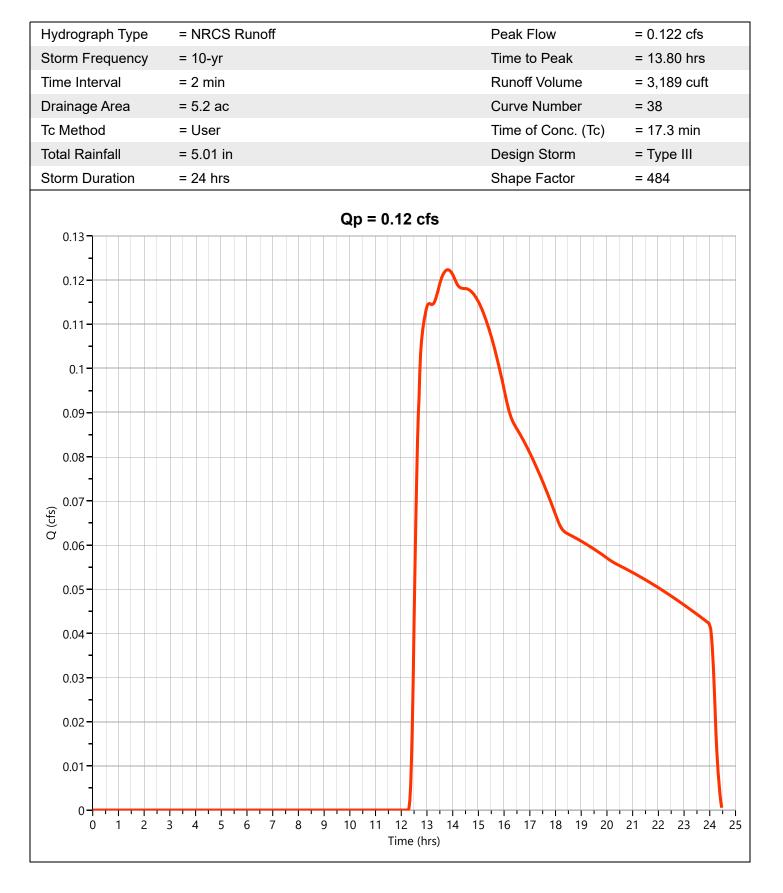
Hydrology Studio v 3.0.0.29

Subcatchment E-2

12-13-2023

Hyd. No. 8

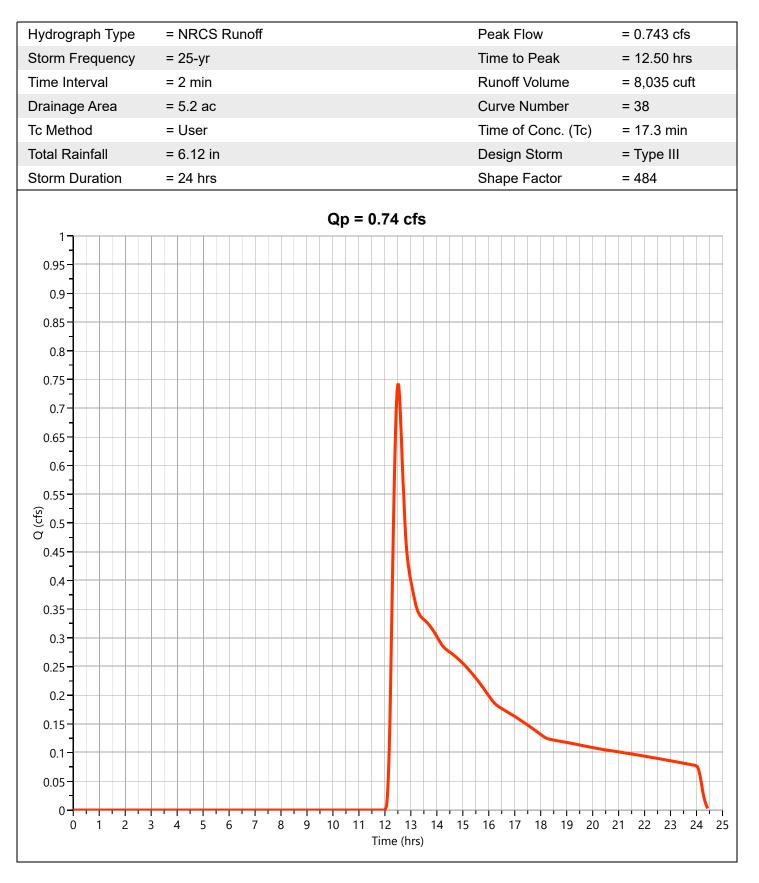
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 5.2 ac	Curve Number	= 38
Tc Method	= User	Time of Conc. (Tc)	= 17.3 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484


Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

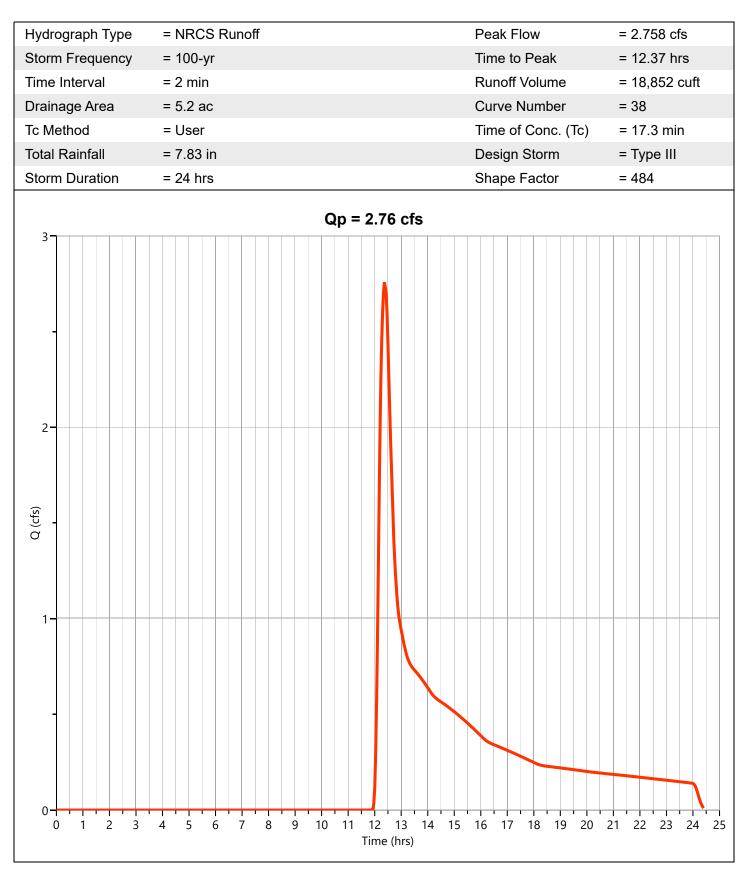
Subcatchment E-2

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment E-2


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-2

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-3	

1. Runoff curve number (CN)

Soil name and hydrologic	jic (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.05	5.19
А	Woods - Good Condition	30			2.57	77.12
A	Open Space - Good Condition	39			0.70	27.21
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one Cl	N source per line.			Totals =	3.32	109.51

109.51

3.32

Storm #2

10

5.01

0.04

=

Storm #1

2

3.23

0.04

_=

Storm #3

100

7.83

0.59

32.97 ;

Use CN =

33

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-3 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.040 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.22 0.22 Shallow concentrated Flow Segment ID B-C C-D 7. Surface Description (paved or unpaved) UNPAVED UNPAVED 8. Flow Length, L ft 30 39 9. Watercourse slope, s ft/ft 0.1 0.2 10. Average Velocity, V (figure 3-1) ft/s 5.10 7.22 11. Tt = L / 3600V Compute Tt hr 0.00 0.00 0.00 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.22

(210-VI-TR-55, Second Ed., June 1986)

D-3

min

13.3

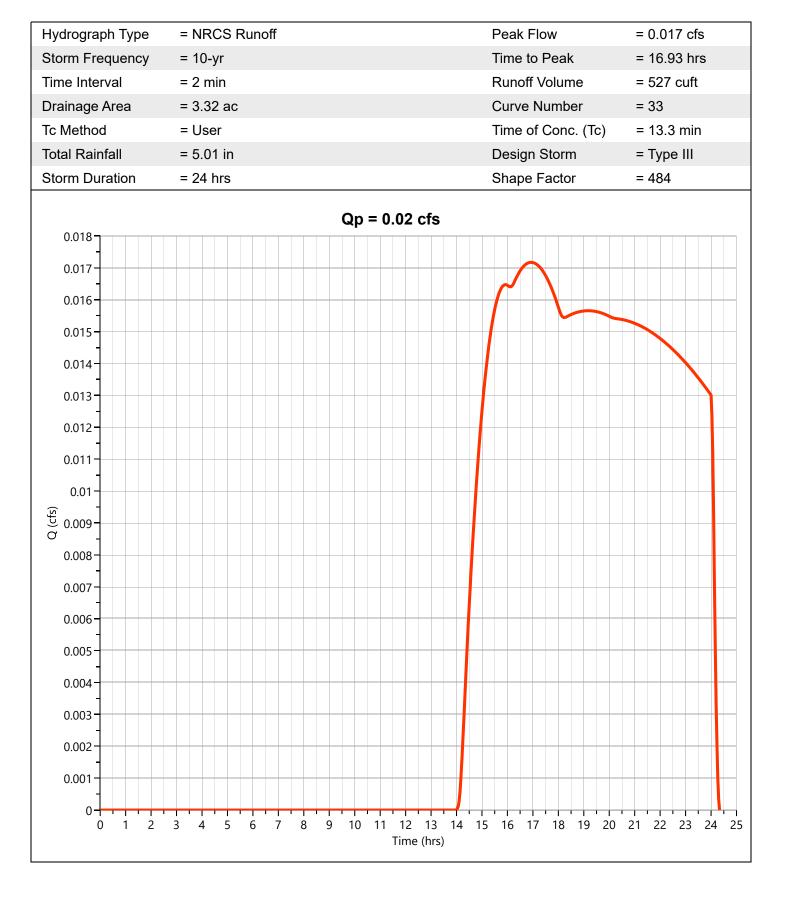
Hydrology Studio v 3.0.0.29

Subcatchment E-3

12-1	3-2023
------	--------

Hyd. No. 9

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 3.32 ac	Curve Number	= 33
Tc Method	= User	Time of Conc. (Tc)	= 13.3 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

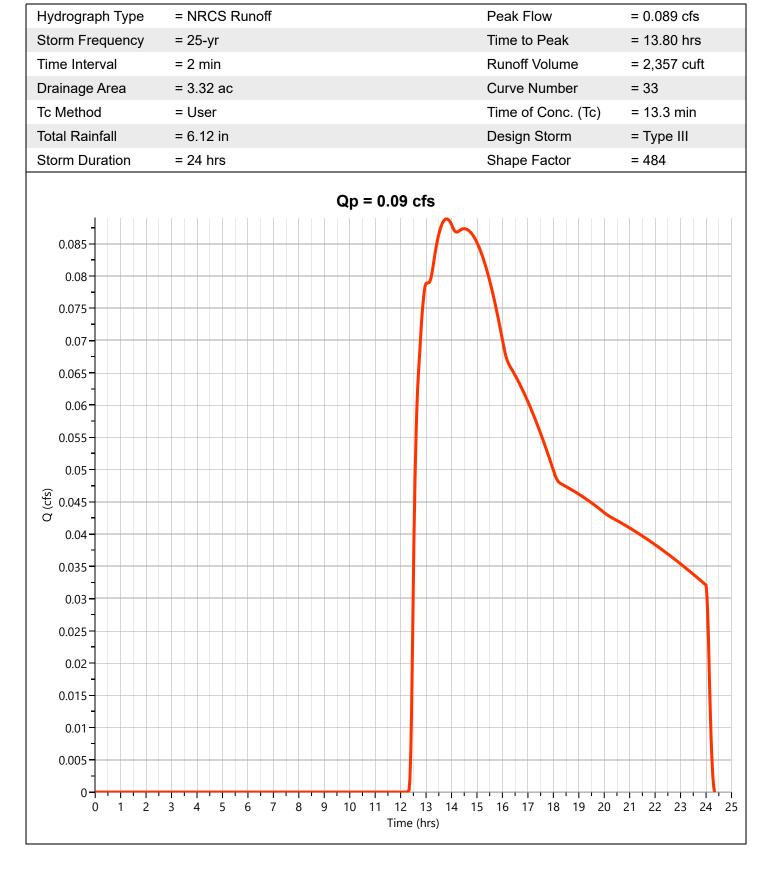

Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

Subcatchment E-3

12-13-2023

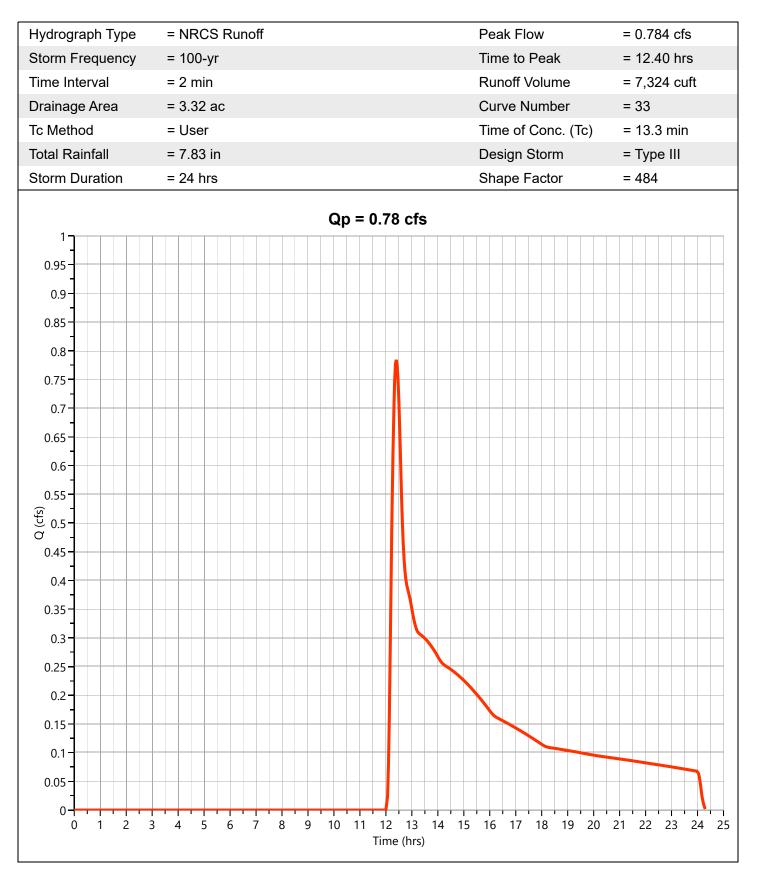
Project Name:



Hydrology Studio v 3.0.0.29

Subcatchment E-3

Project Name: 12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment E-3

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-4	

1. Runoff curve number (CN)

Soil name and hydrologic	ic (cover type, treatment, and	CN 1/			Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.06	6.18
A	Woods - Good Condition	30			1.14	34.22
А	Open Space - Good Condition	39			1.16	45.41
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one C	CN source per line.			Totals =	2.37	85.81

85.81

2.37

Storm #2

10

5.01

0.12

=

Storm #3

100

7.83

0.85

=

Storm #1

2

3.23 0.00

CN (weighted) = total product total area

36.24 ;

Use CN =

36

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

 Runoff, Q......
 in

 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-4 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.050 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.20 0.20 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 260 9. Watercourse slope, s 0.045 ft/ft 10. Average Velocity, V (figure 3-1) ft/s 3.42 11. Tt = L / 3600V Compute Tt hr 0.02 0.02 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.22

(210-VI-TR-55, Second Ed., June 1986)

D-3

min

13.3

Hydrology Studio v 3.0.0.29

Subcatchment E-4

12-1	3-2023
------	--------

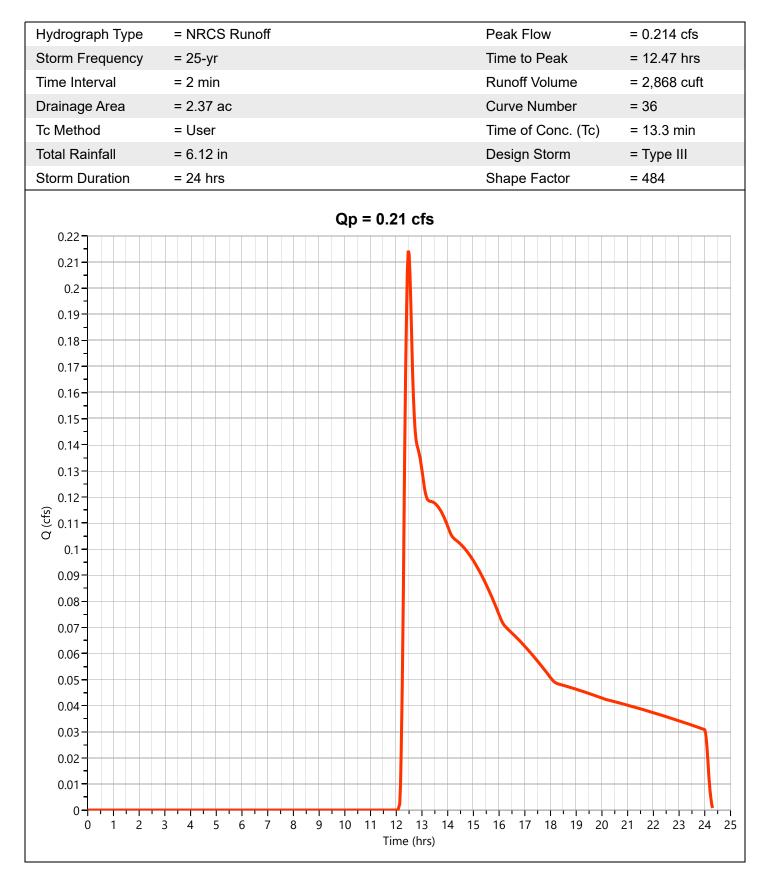
Hyd. No. 10

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 2.37 ac	Curve Number	= 36
Tc Method	= User	Time of Conc. (Tc)	= 13.3 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

Qp = 0.00 cfs

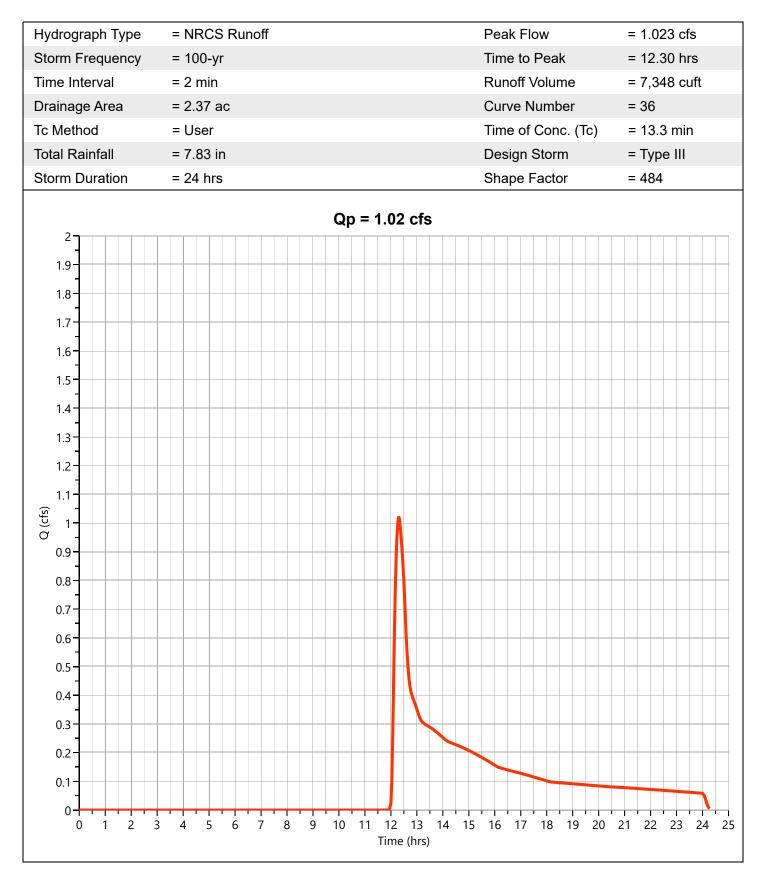
Hydrology Studio v 3.0.0.29

Subcatchment E-4


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-4


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-4

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-5	

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/			Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.05	4.44
A	Woods - Good Condition	30			0.39	11.74
A	Open Space - Good Condition	39			2.15	83.84
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN so	purce per line.			Totals =	2.59	100.02
CN (weighted	d) =total_product=100.02 _=	38.67	; Use	CN =	39]

2.59

CN (weighted) = total product total area

38.<u>67</u>;

2. Runoff

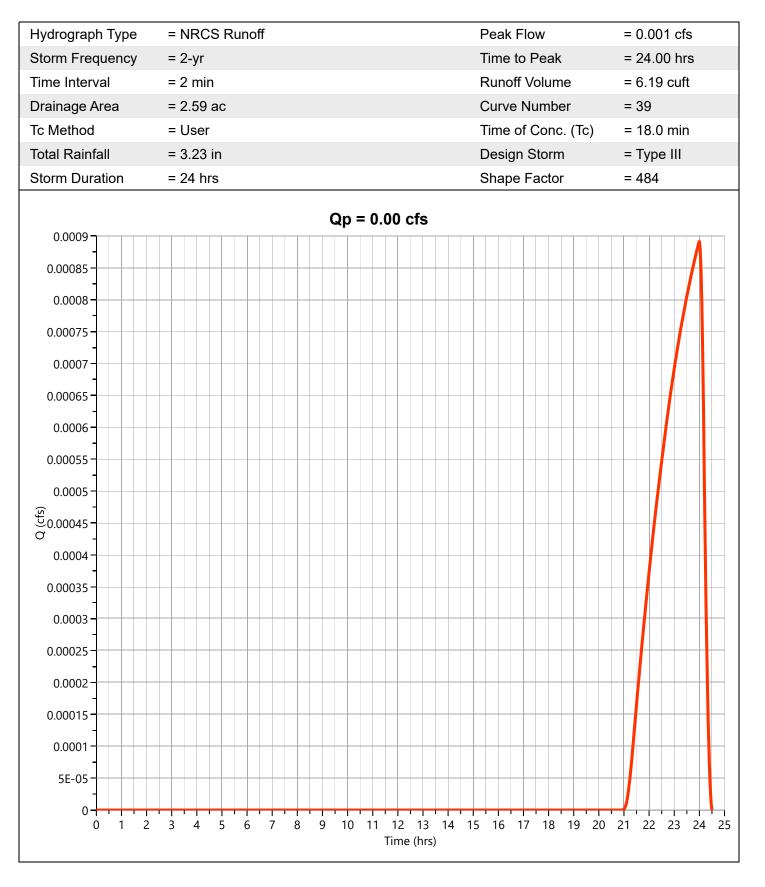
Frequency..... Rainfall, P (24-hour)..... Runoff, Q..... (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)

Storm #1 Storm #2 Storm #3 10 100 yr 2 5.01 7.83 in 3.23 0.00 0.19 1.06 in

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-5 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.030 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.25 0.25 Shallow concentrated Flow Segment ID B-C C-D 7. Surface Description (paved or unpaved) UNPAVED UNPAVED 8. Flow Length, L ft 184 293 9. Watercourse slope, s 0.05 ft/ft 0.01 10. Average Velocity, V (figure 3-1) ft/s 1.61 3.61 11. Tt = L / 3600V Compute Tt hr 0.03 0.02 0.05 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.30

(210-VI-TR-55, Second Ed., June 1986)

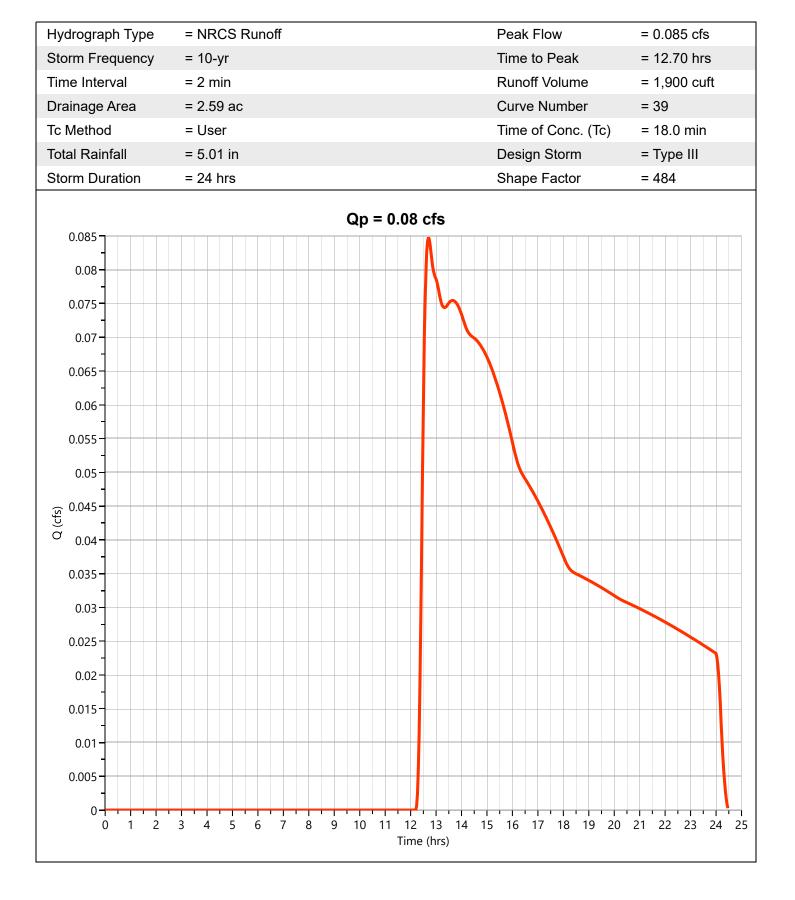
D-3


min

18.0

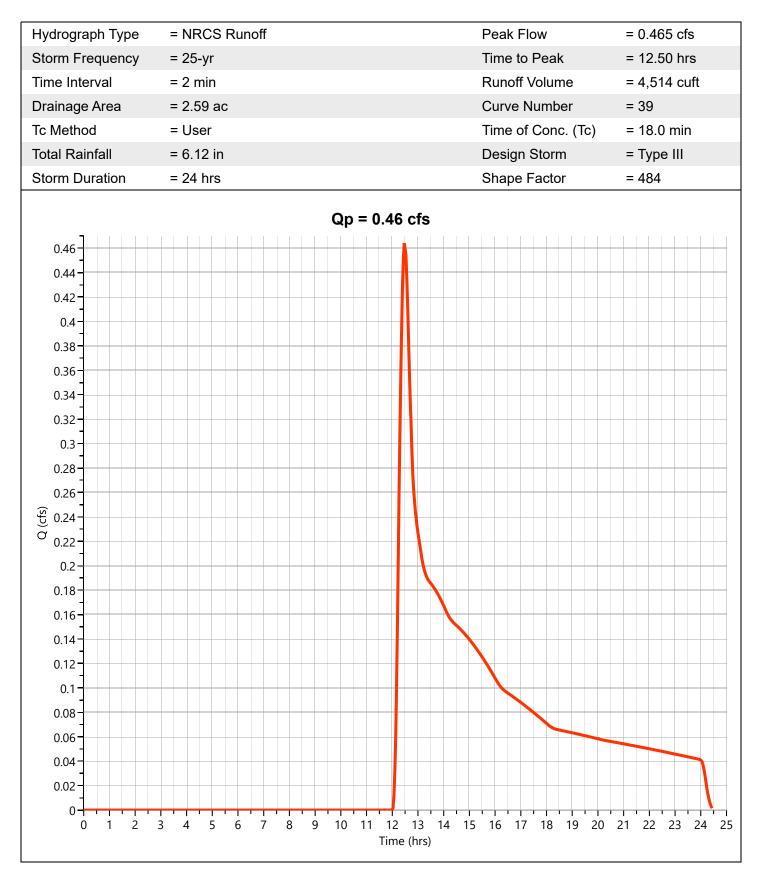
Hydrology Studio v 3.0.0.29

Subcatchment E-5


12-13-2023

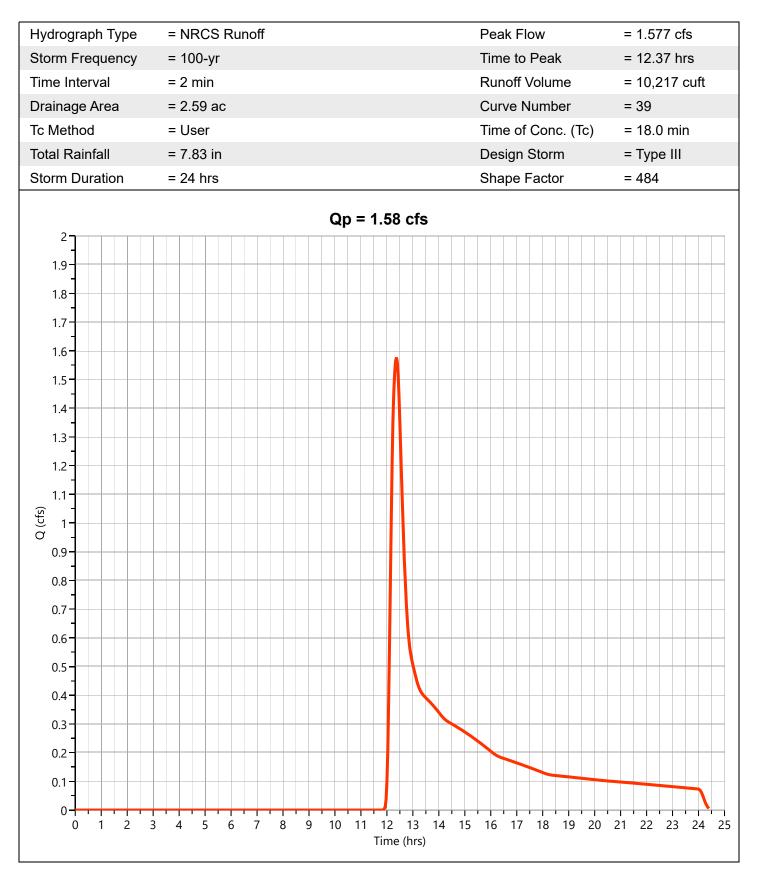
Hydrology Studio v 3.0.0.29

Subcatchment E-5


Project Name: 12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-5


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment E-5

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

Project:	Stow Acres	By PFK	Date 12/12/23
Location:	Stow, MA	Checked	Date
Circle one:	Present Developed	Subcatchment E-6	

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/			Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.02	1.74
A	Woods - Good Condition	30			1.00	29.85
A	Open Space - Good Condition	39			5.37	209.47
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN so	urce per line.	-		Totals =	6.38	241.06
CN (weighted	d) =total_product=241.06=	37.76	; Use	CN =	38	1

Storm #3

100

7.83

0.98

6.38

Storm #2

10

5.01

0.16

Storm #1

2

3.23

0.00

CN (weighted) = total product total area

2. Runoff

Frequency..... yr Rainfall, P (24-hour)..... in Runoff, Q..... in (Use P and CN with table 2-1, fig. 2-1,)

or eqs. 2-3 and 2-4.)

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment E-6 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.030 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.25 0.25 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 469 9. Watercourse slope, s ft/ft 0.008 10. Average Velocity, V (figure 3-1) ft/s 1.44 11. Tt = L / 3600V Compute Tt hr 0.09 0.09 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0 20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19) hr 0.34

(210-VI-TR-55, Second Ed., June 1986)

D-3

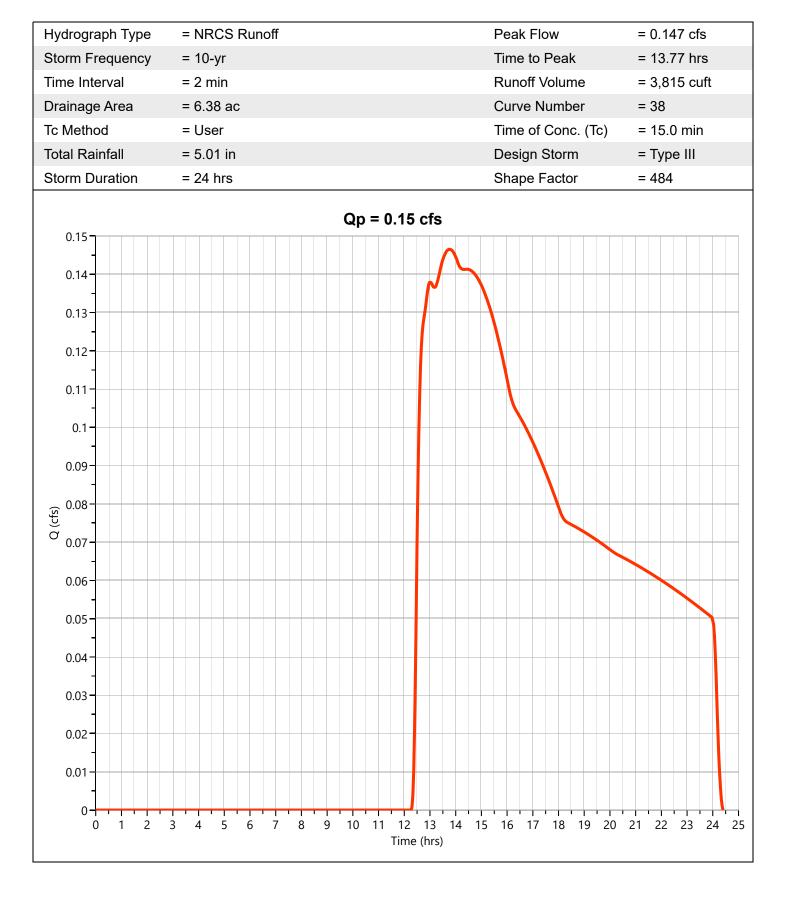
min

20.2

Hydrology Studio v 3.0.0.29

Subcatchment E-6

Hyd. No. 12

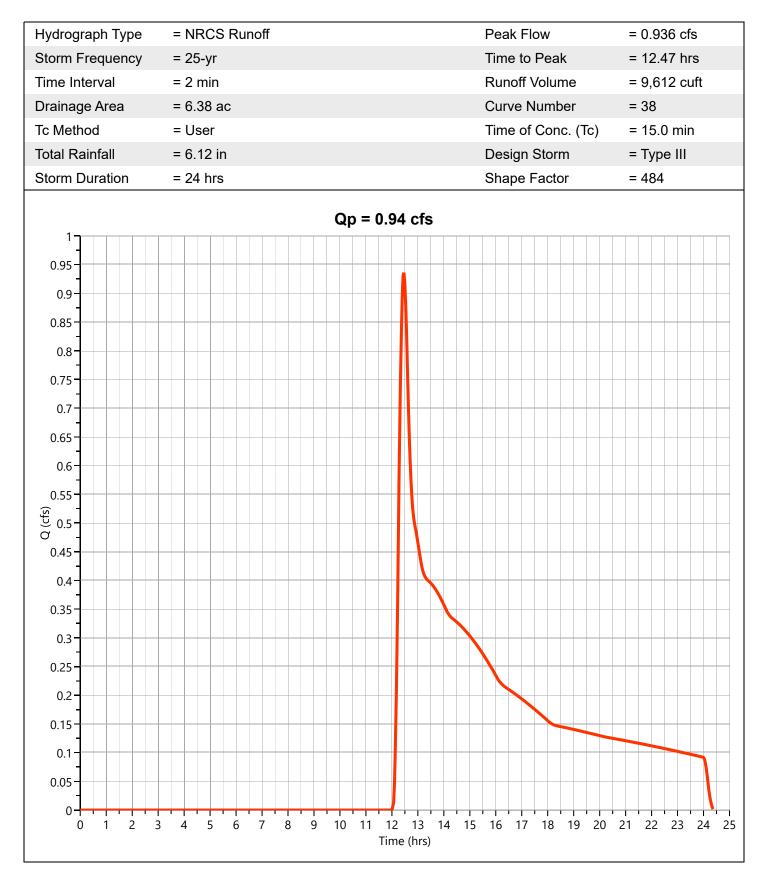

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 6.38 ac	Curve Number	= 38
Tc Method	= User	Time of Conc. (Tc)	= 15.0 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

Subcatchment E-6

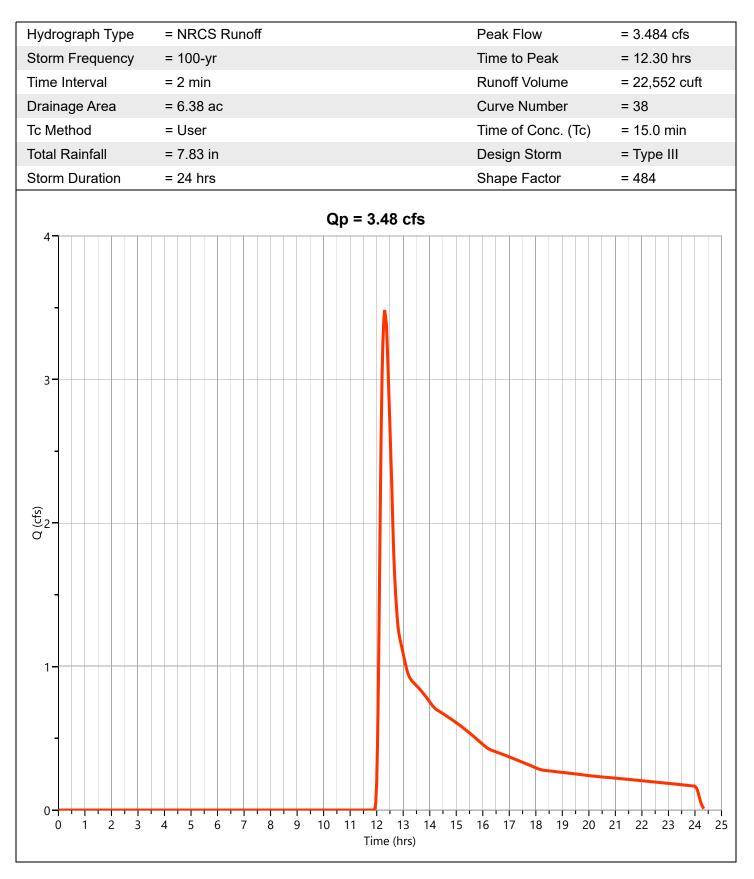
12-13-2023



Hydrology Studio v 3.0.0.29

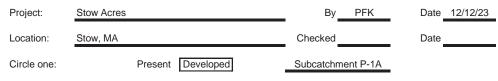
Subcatchment E-6

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment E-6


12-13-2023

Post-Development Hydrology

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and	CN 1/			Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.61	59.83
А	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			1.26	49.11
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one C	CN source per line.			Totals =	1.87	108.94

CN (weighted) = total product

58.26 ;

Use CN =

58

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

 Storm #1
 Storm #2
 Storm #3

 2
 10
 100

 3.23
 5.01
 7.83

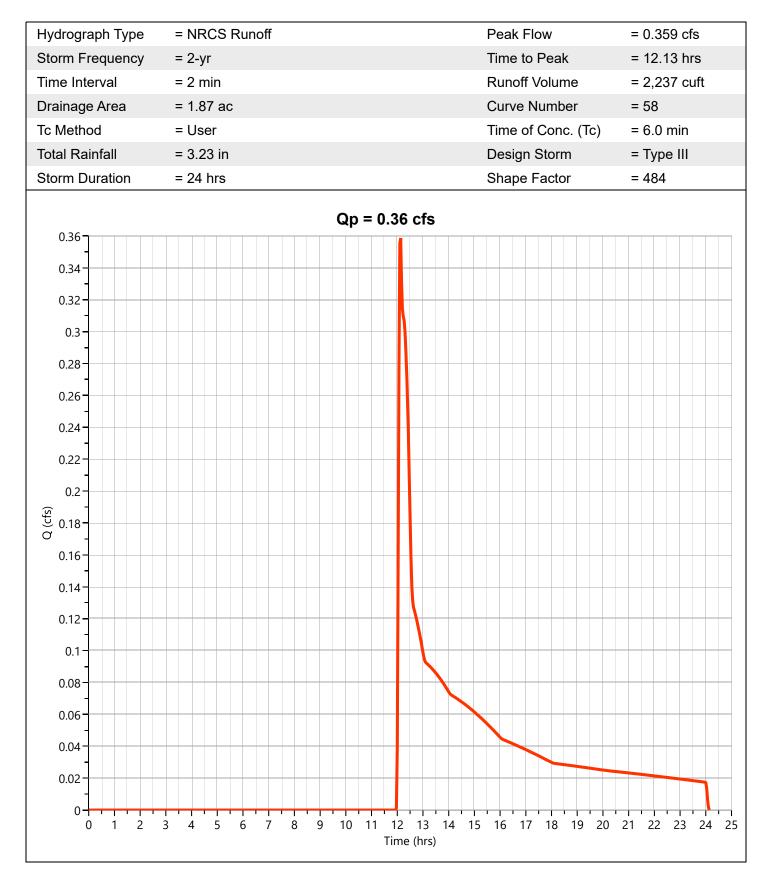
3.02

=

108.94

1.87

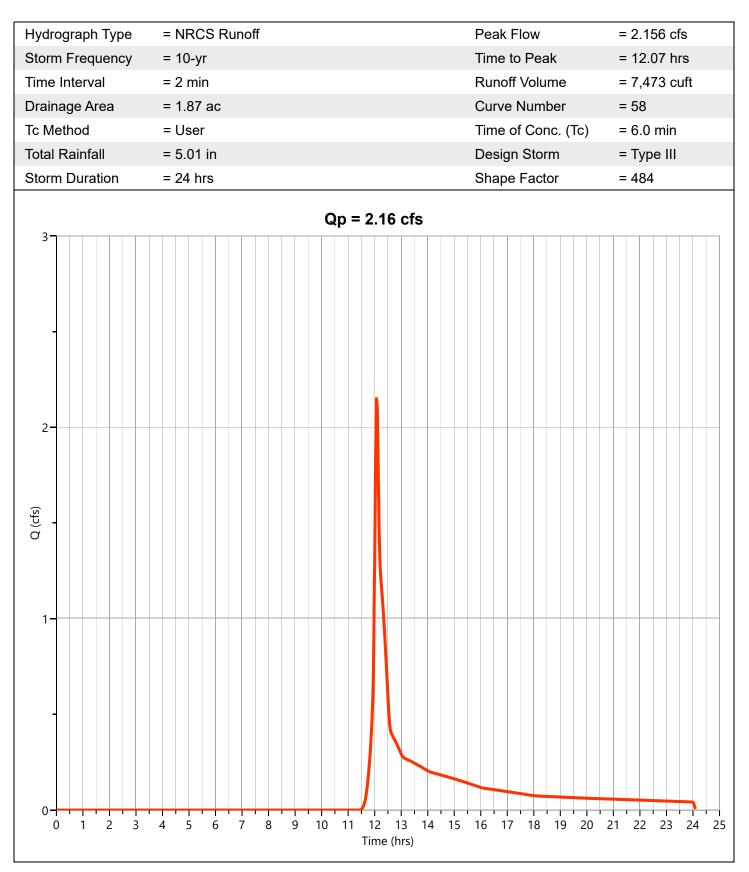
1.19


=

0.36

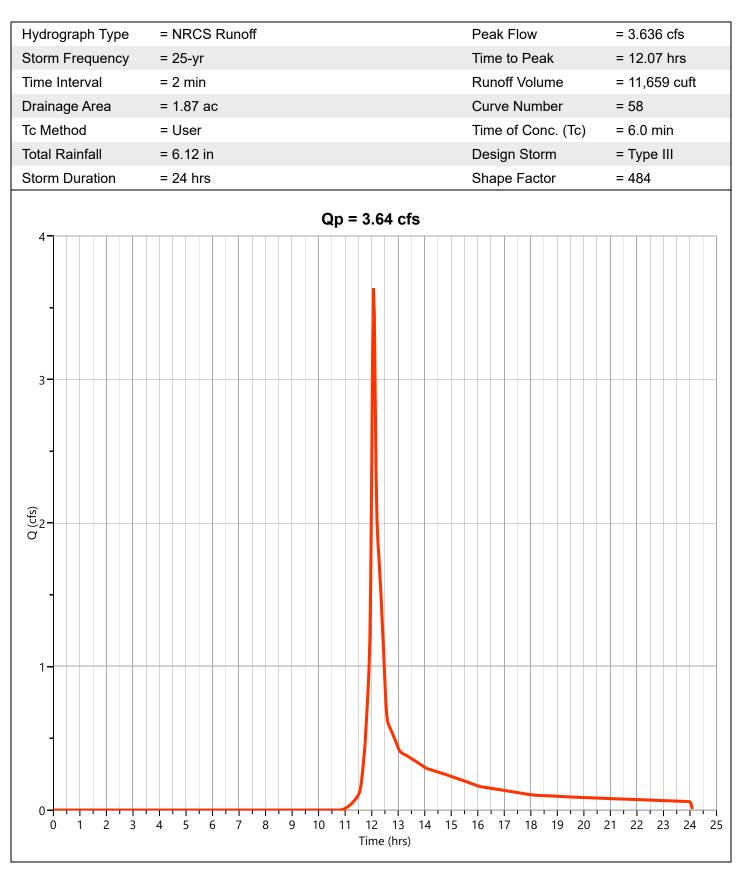
Hydrology Studio v 3.0.0.29

Subcatchment P-1A



Hydrology Studio v 3.0.0.29

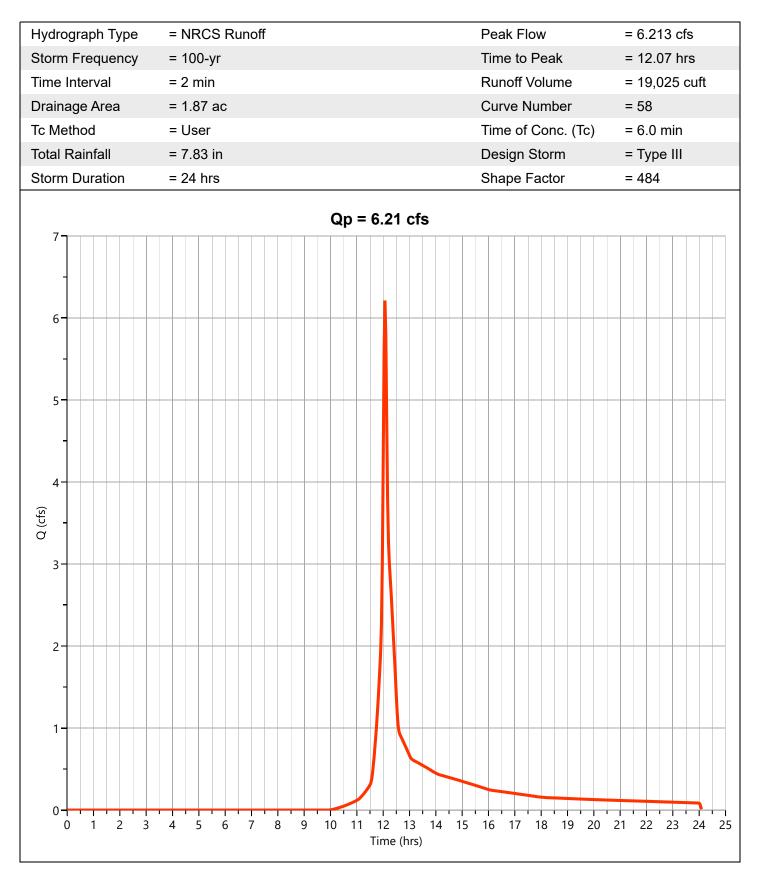
Subcatchment P-1A


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1A

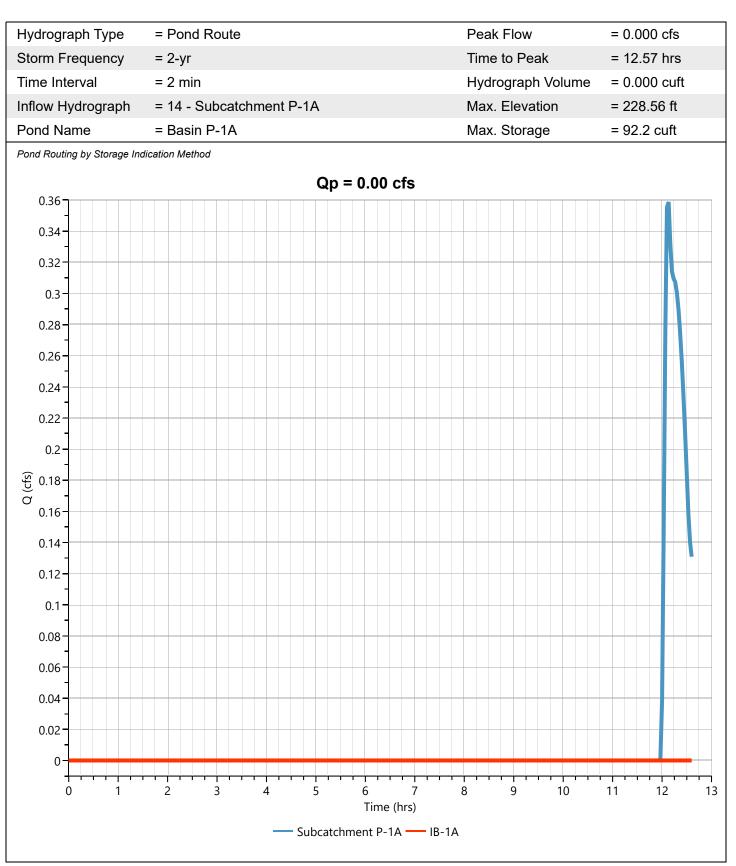
12-13-2023



Hydrology Studio v 3.0.0.29

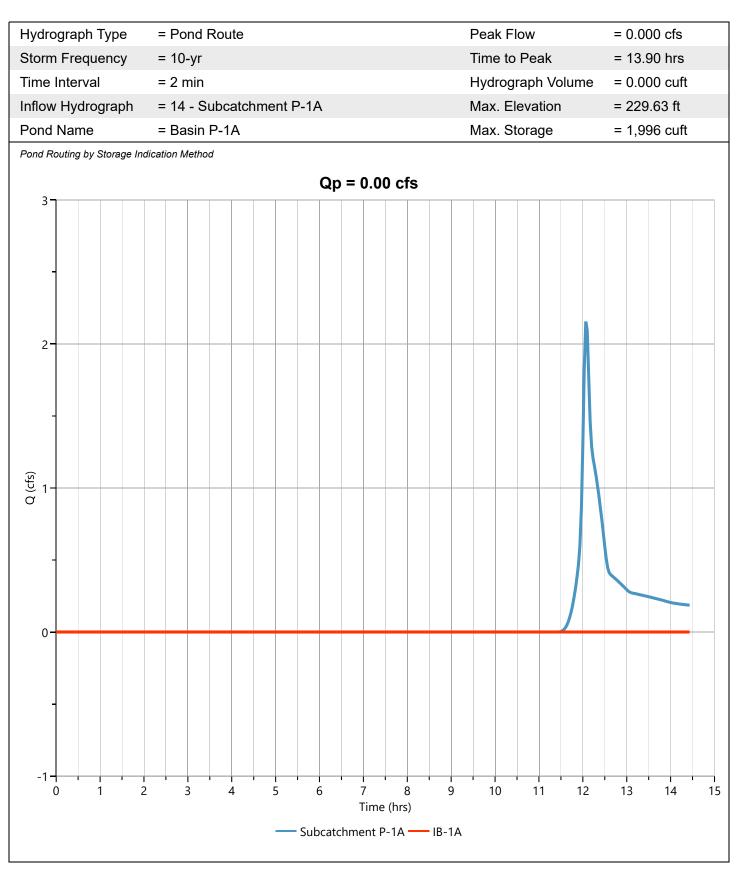
Subcatchment P-1A

12-13-2023


Project Name:

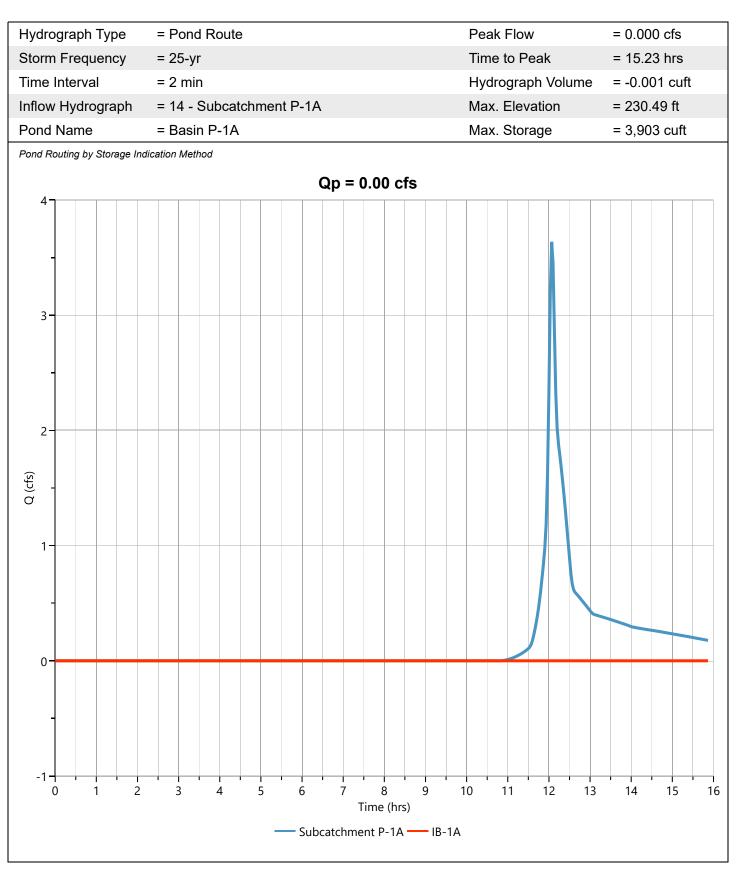
Hydrology Studio v 3.0.0.29

IB-1A


12-13-2023

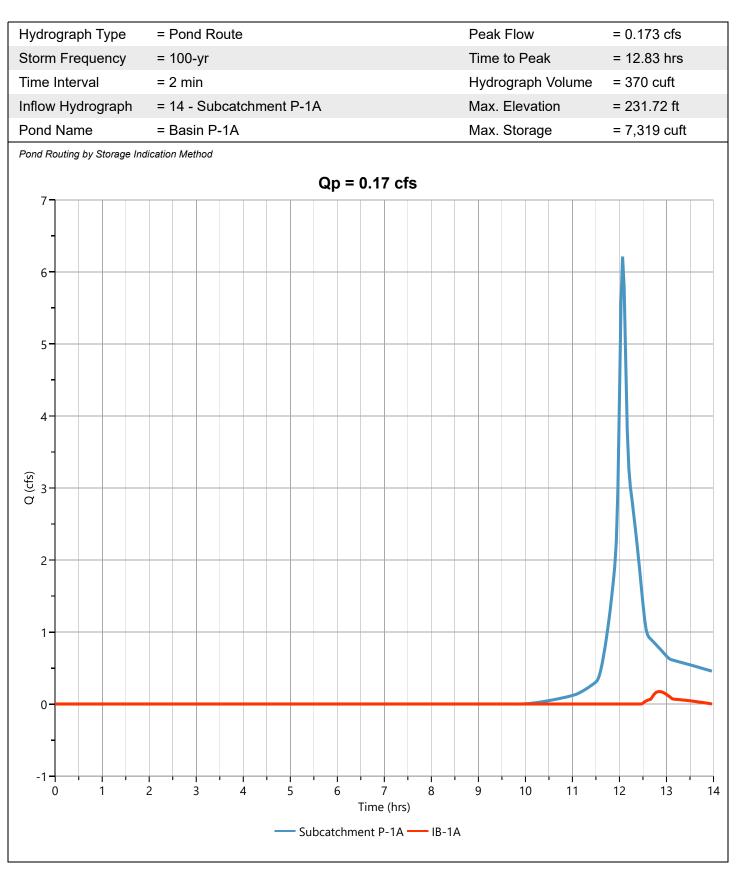
Hydrology Studio v 3.0.0.29

IB-1A


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1A


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1A

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1A

Project Name:

12-13-2023

Stage-Storage

User Defined Cont		Stage / Storage Table								
Description	ption Input		StageElevation (ft)Contour Area (sqft)				ge To	Total Storage (cuft)		
Bottom Elevation, ft	228.50					(cuft)	(-			
Voids (%)	100.00	0.00	228.50 229.00	1,457 1,680		0.000 784		0.000 784		
Volume Calc	None	1.50	230.00	2,169		1,925		2,709		
Volume Calc	None	2.50	231.00	2,715		2,442		5,151		
		3.50	232.00	3,318		3,017		8,167		
		4.50	233.00	3,977		3,648		11,815		
	_									
		Ctoria (C towo et a							
		Stage-	Storage							
233										
								4		
232 -										
								- 3		
231-										
								2		
230								· ·		
								1		
220										
229										
								- 0		
228		F000 (000 7000	2000	0000	10000	11000	12000		
0 1000 2000 3	4000 4000		5000 7000 prage (cuft)	8000	9000	10000	11000	12000		
		<u> </u>	ontours							

Culvert / Orifices

Rise, in

Span, in

No. Barrels

Length, ft

Invert Elevation. ft

Barrel Slope, %

Orifice Coefficient, Co

Culvert

24

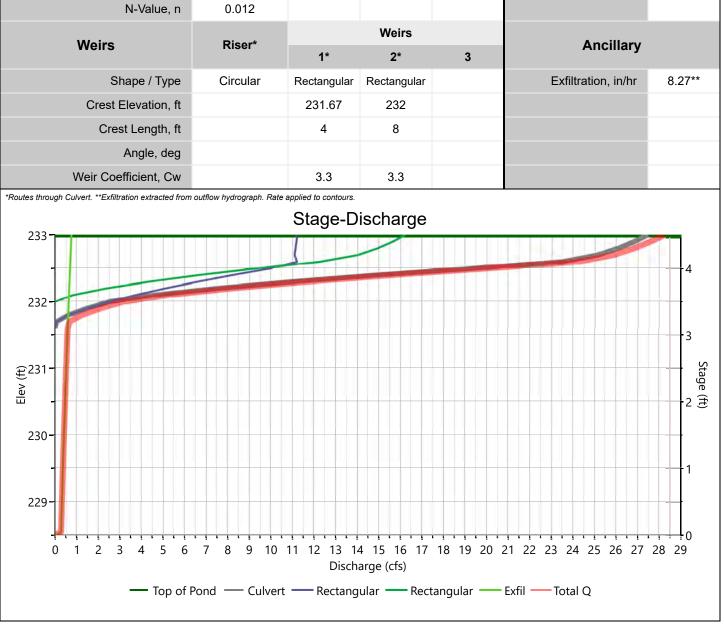
24

1

228.50

0.60

80


1.25

Hydrology Studio v 3.0.0.29

Basin P-1A

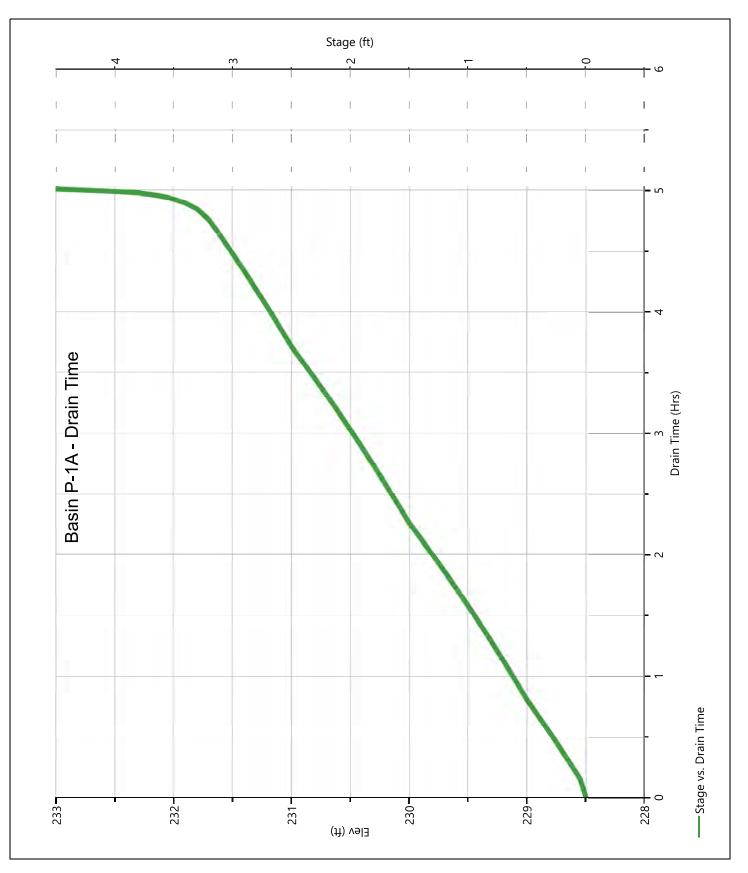
12-13-2023

Stage-Discharge Orifices **Perforated Riser** 2 1 3 Hole Diameter, in No. holes Invert Elevation, ft Height, ft Orifice Coefficient, Co Weirs Ancillary 2* 1* 3 Exfiltration, in/hr Rectangular Rectangular 8.27** 231.67 232 4 8 3.3 3.3 Stage-Discharge 4

Hydrology Studio v 3.0.0.29

Basin P-1A

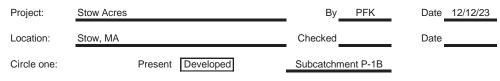
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	228.50	0.000	0.000					0.000	0.000			0.000		0.000
0.50	229.00	784	0.000					0.000	0.000			0.322		0.322
1.50	230.00	2,709	0.000					0.000	0.000			0.415		0.415
2.50	231.00	5,151	0.000					0.000	0.000			0.520		0.520
3.50	232.00	8,167	2.502 ic					2.502	0.000			0.635		3.138
4.50	233.00	11,815	27.47 ic					11.23 s	16.25 s			0.761		28.24

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1A



12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.61	60.07
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.88	34.38
С	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one Cl	N source per line.			Totals =	1.49	94.45

94.45

1.49

Storm #2

10

5.01

1.53

=

Storm #3

100

7.83

3.56

=

Storm #1

2 3.23

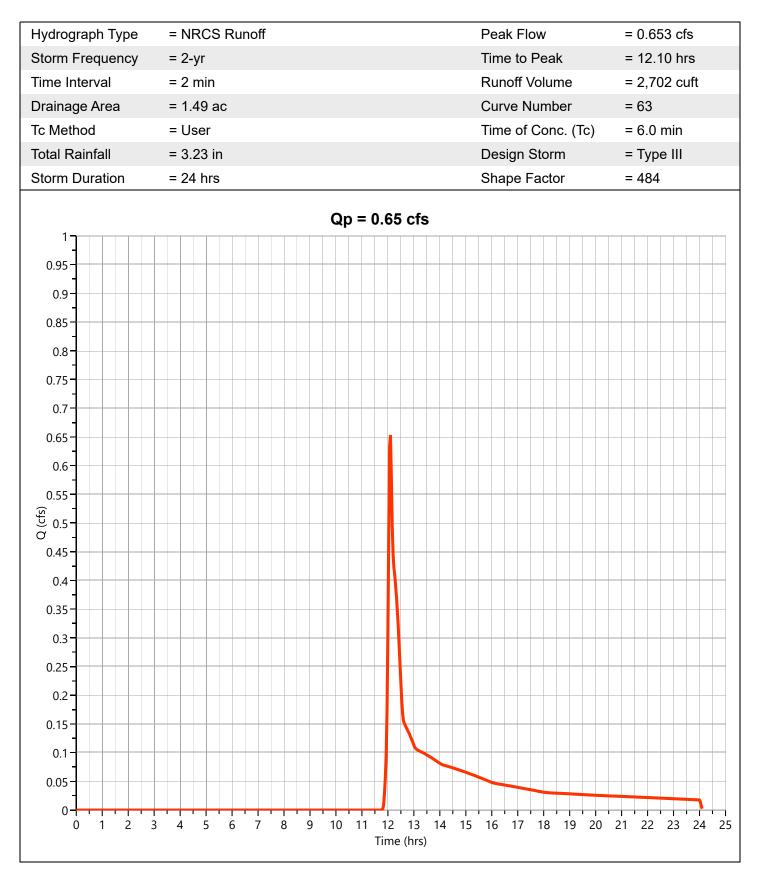
0.54

63.2<u>0</u>;

63

2. Runoff

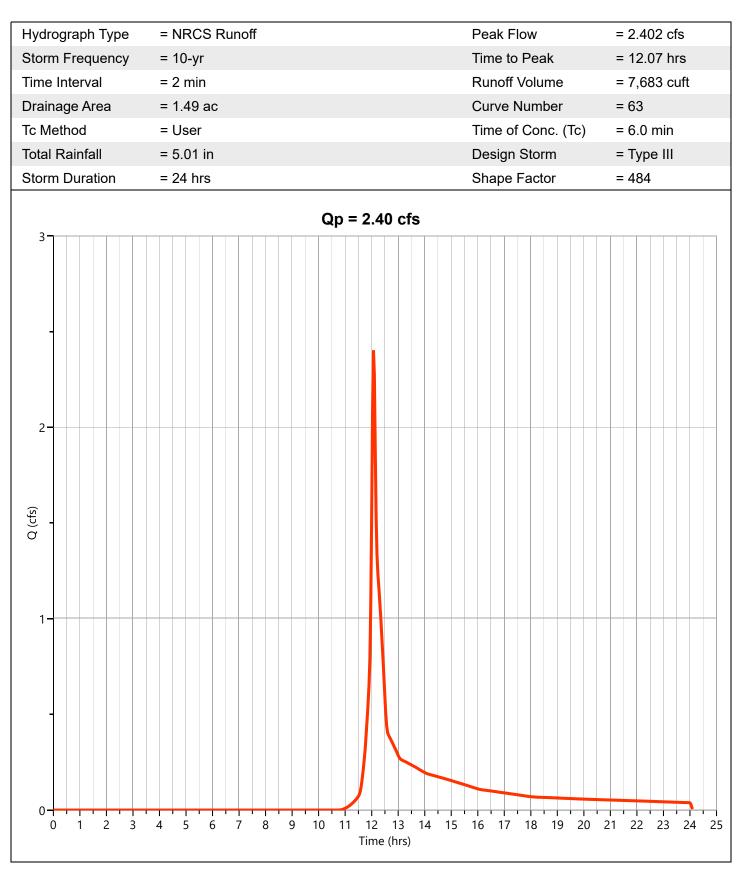
Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,)	in


or eqs. 2-3 and 2-4.)

Use CN =

Hydrology Studio v 3.0.0.29

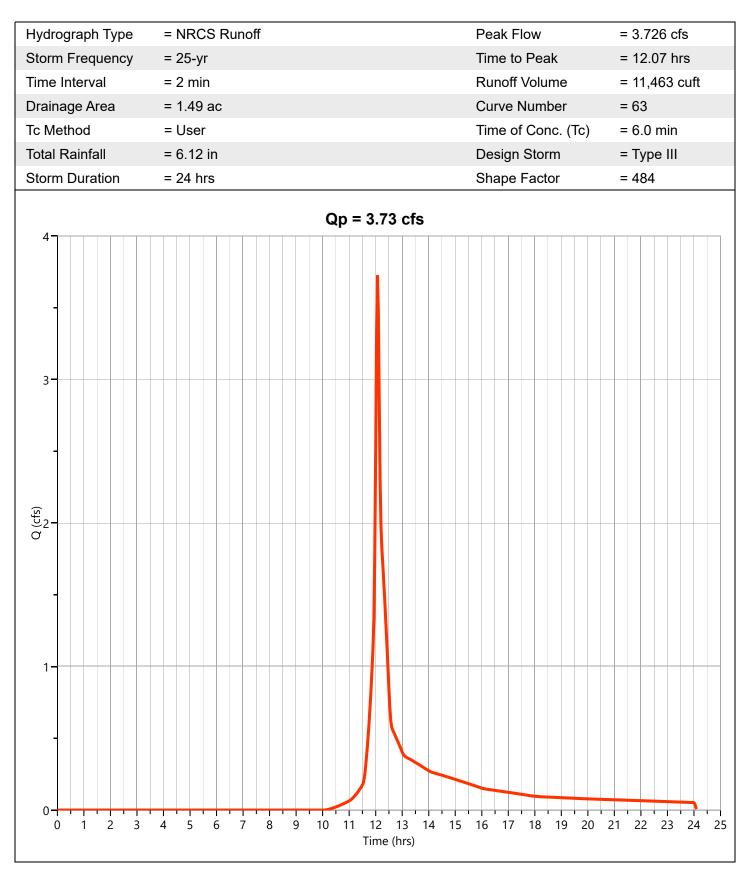
Subcatchment P-1B


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1B

12-13-2023

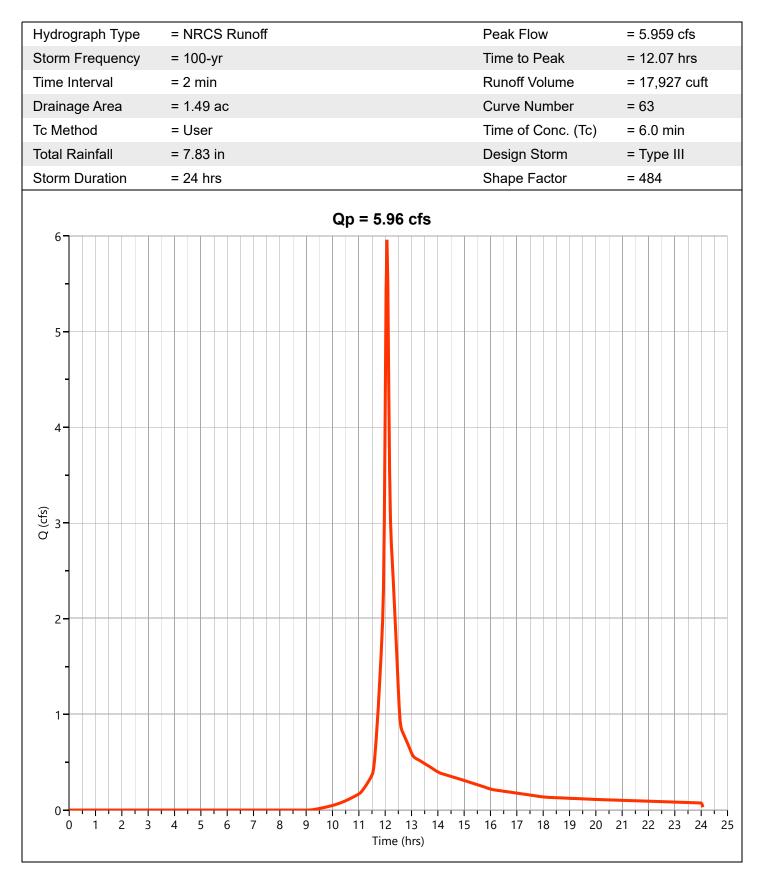


Hydrology Studio v 3.0.0.29

Subcatchment P-1B

12-13-2023

Project Name:

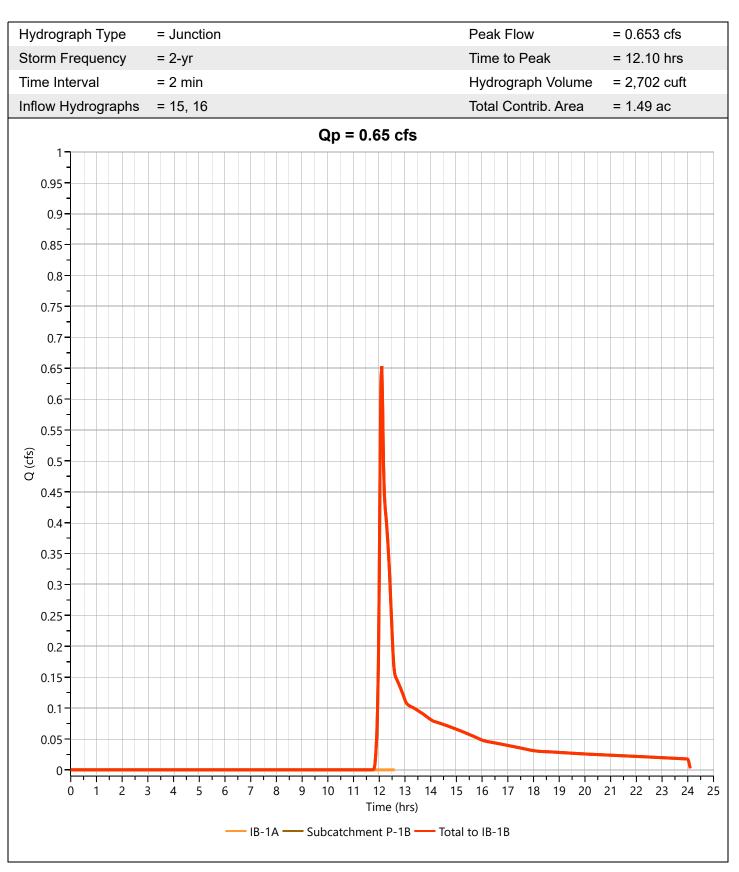


Hydrology Studio v 3.0.0.29

Subcatchment P-1B

12-13-2023

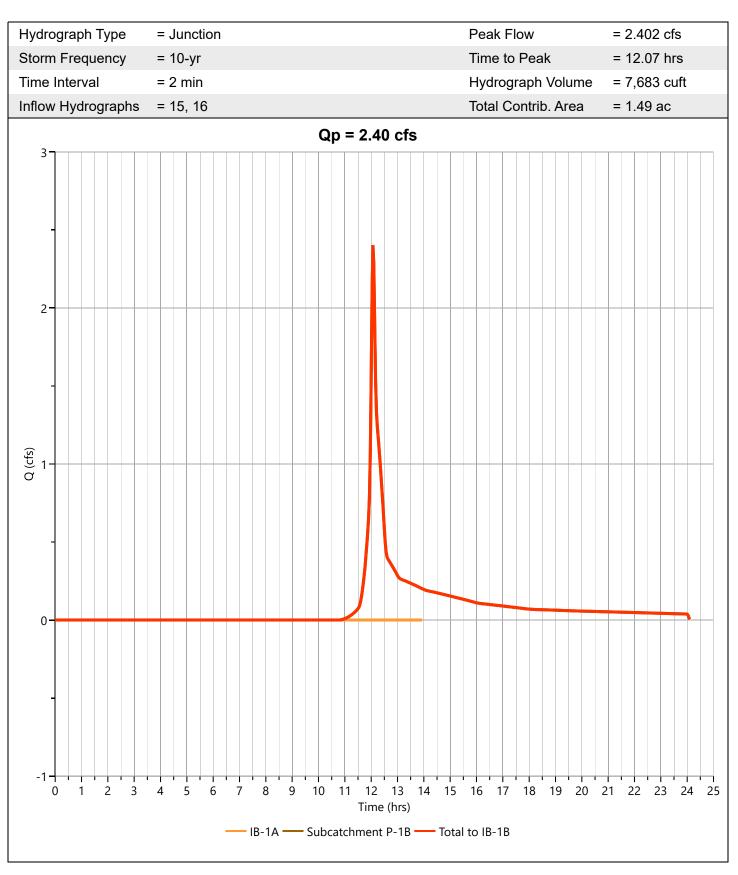
Project Name:



Hydrology Studio v 3.0.0.29

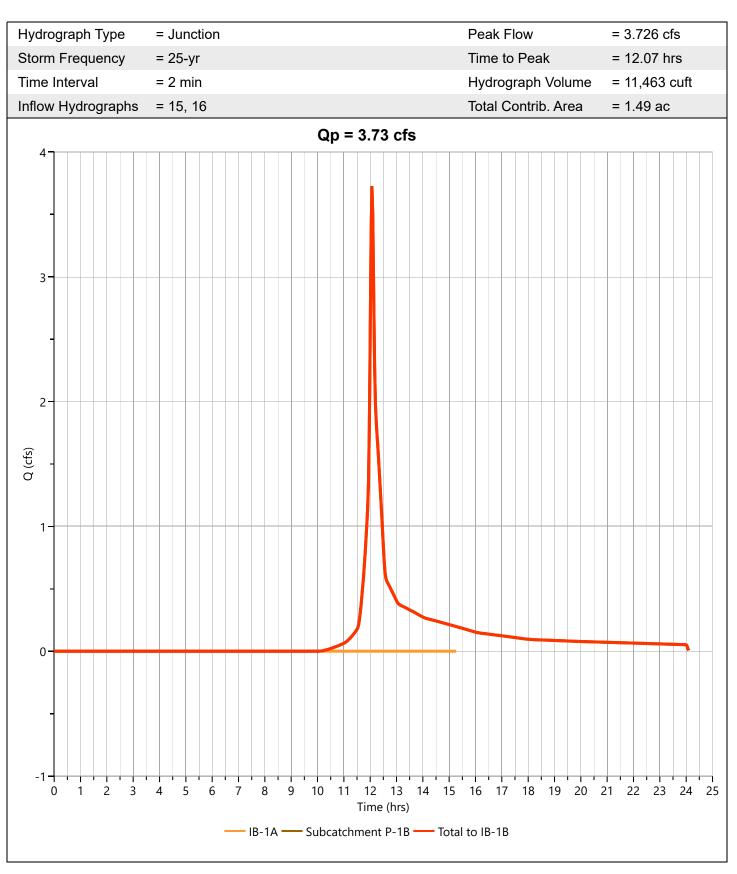
Total to IB-1B

12-13-2023


Project Name:

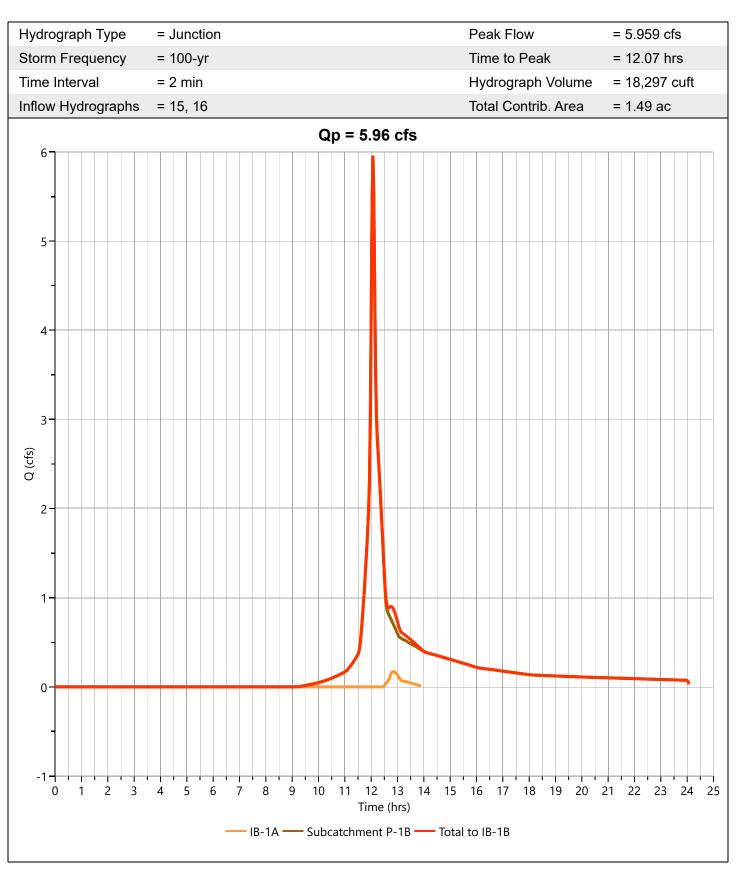
Hydrology Studio v 3.0.0.29

Total to IB-1B


12-13-2023

Hydrology Studio v 3.0.0.29

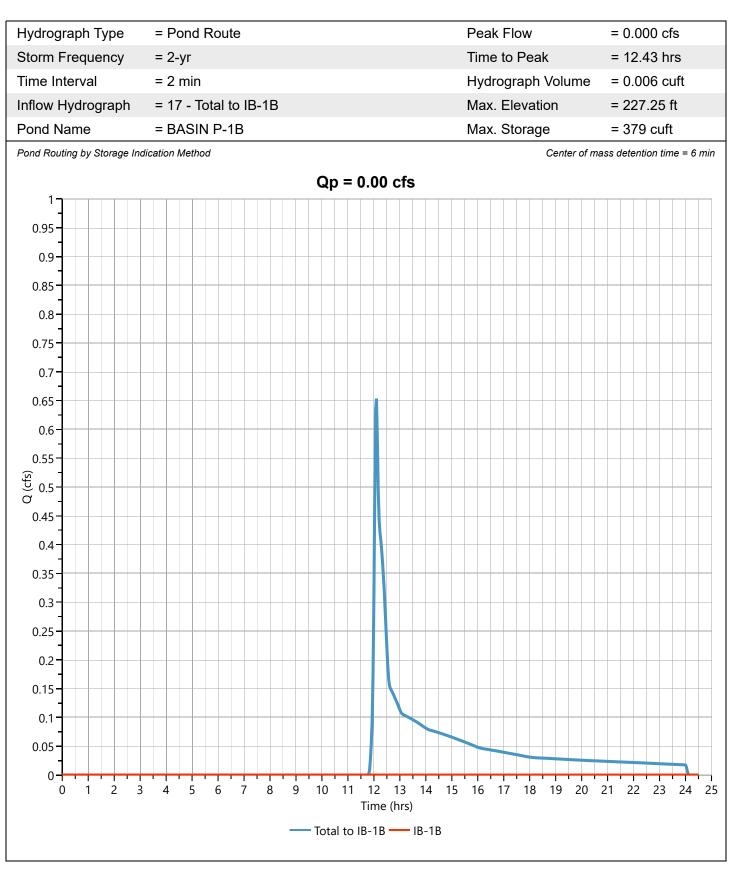
Total to IB-1B


Project Name: 12-13-2023

Hydrology Studio v 3.0.0.29

Total to IB-1B

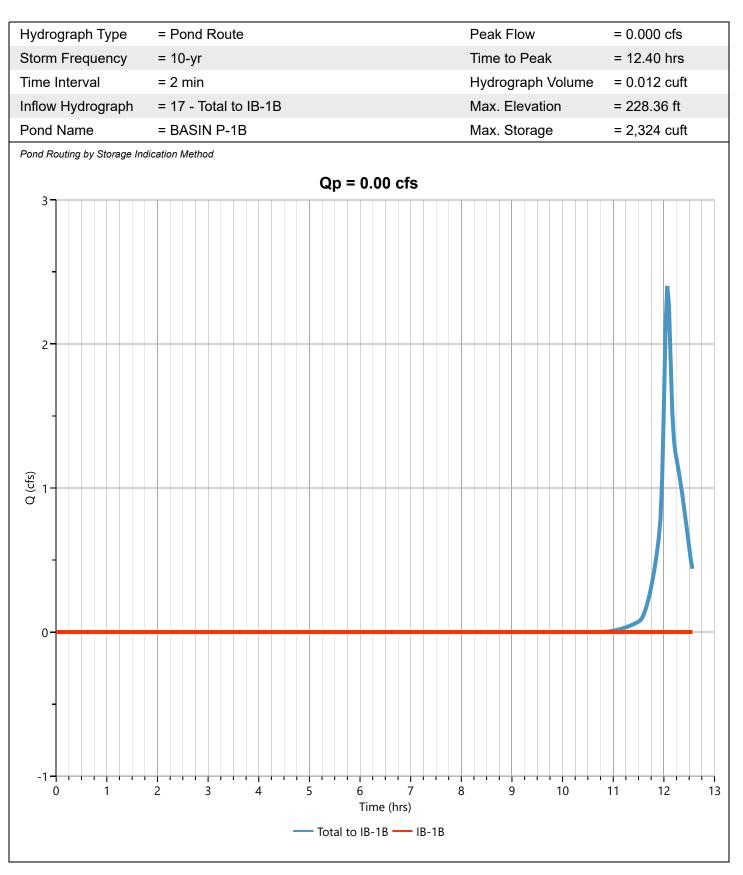
12-13-2023



Hydrology Studio v 3.0.0.29

IB-1B

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

IB-1B

12-13-2023

= Pond Route

= 17 - Total to IB-1B

= 25-yr

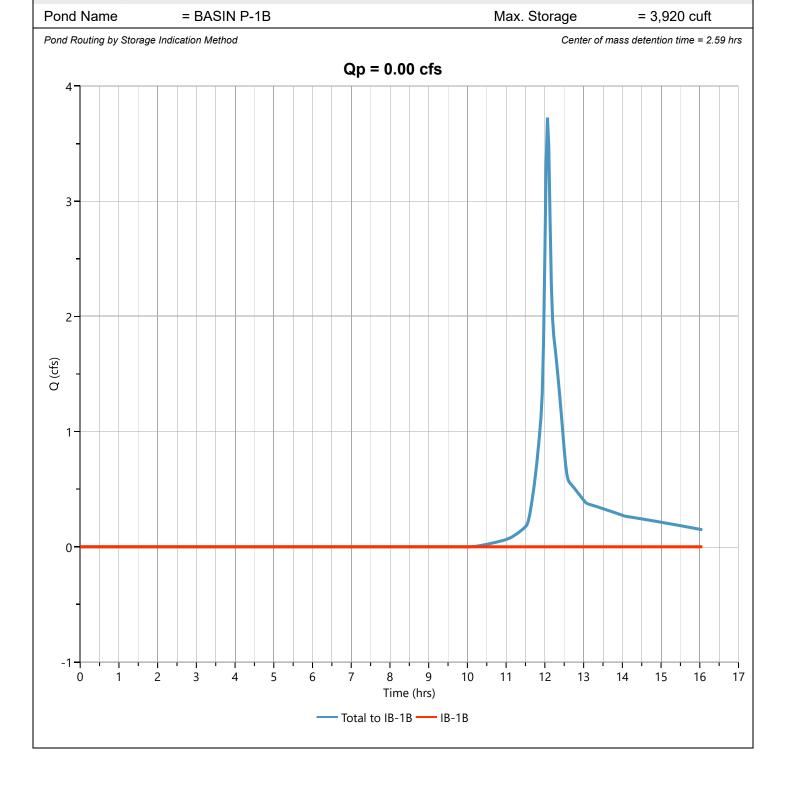
= 2 min

Hydrology Studio v 3.0.0.29

Hydrograph Type

Storm Frequency

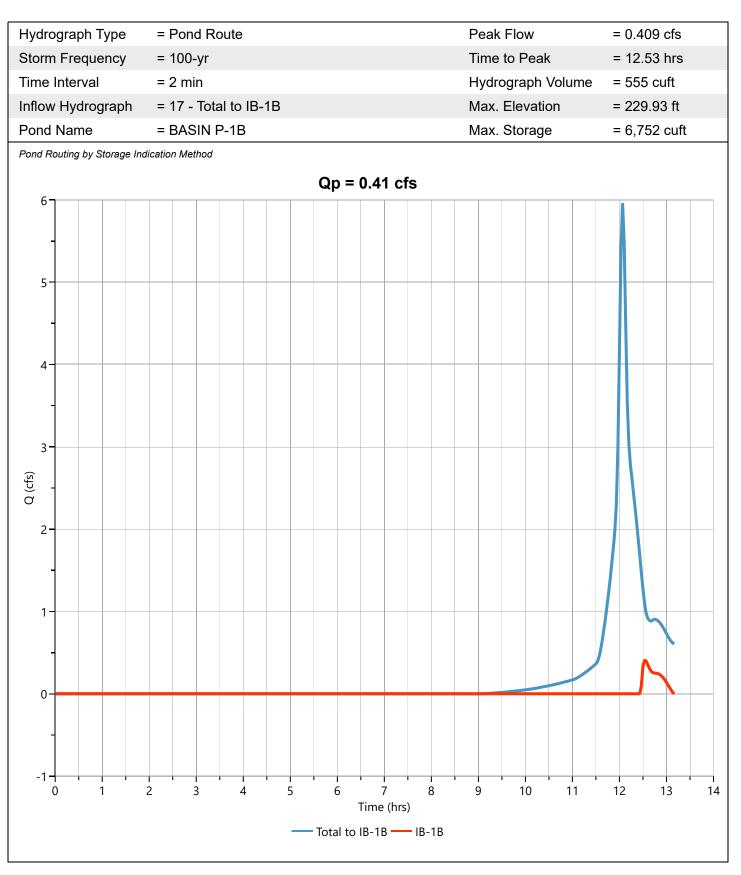
Inflow Hydrograph


Time Interval

IB-1B

12-13-2023

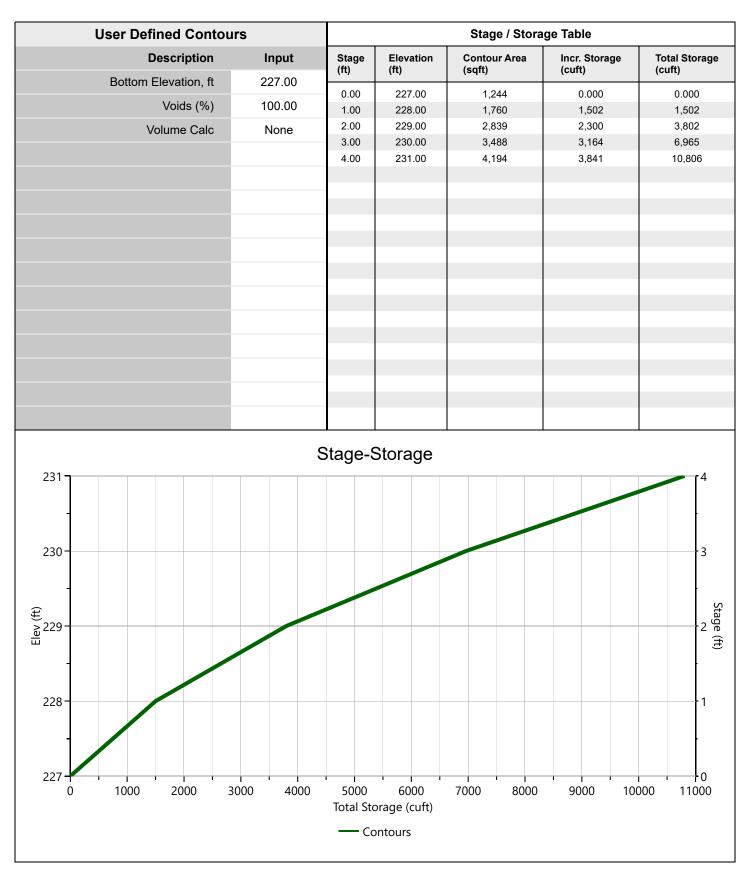
= 0.000 cfs Time to Peak = 15.30 hrs Hydrograph Volume = 0.006 cuft Max. Elevation = 229.04 ft


Peak Flow

Hydrology Studio v 3.0.0.29

IB-1B

12-13-2023


Hydrology Studio v 3.0.0.29

BASIN P-1B

Project Name:

12-13-2023

Stage-Storage

Hydrology Studio v 3.0.0.29

BASIN P-1B

12-13-2023

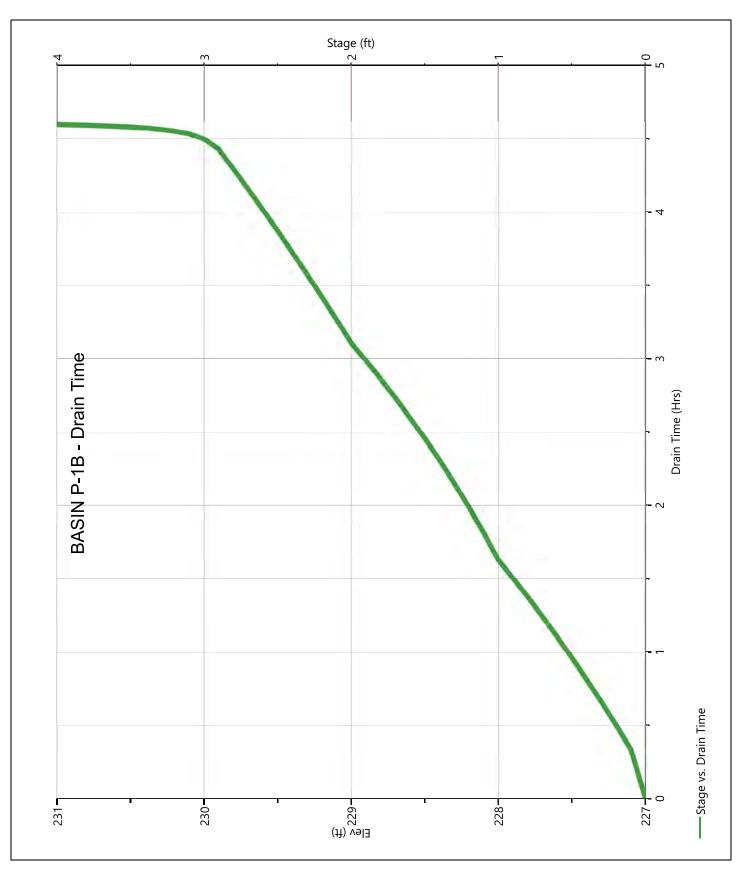
Stage-Discharge

Output / Outfings	Orderent		Orifices		Perforated Riser			
Culvert / Orifices	Culvert	1	2	3				
Rise, in	27				Hole Diameter, in			
Span, in	27				No. holes			
No. Barrels	1				Invert Elevation, ft			
Invert Elevation, ft	224.00				Height, ft			
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co			
Length, ft	58							
Barrel Slope, %	1.72							
N-Value, n	0.012							
			Weirs					
Weirs	Riser*	1*	2	3	Ancillary			
Shape / Type		Rectangular			Exfiltration, in/hr	8.27**		
Crest Elevation, ft		229.9						
Crest Length, ft		12						
Angle, deg								
Weir Coefficient, Cw		3.3						
231- 230- ± 229- 228- 248- 24			ischarge					
	10 12 14 1 • Top of Pond —	Disch	22 24 26 arge (cfs) Rectangular			2 44		

Hydrology Studio v 3.0.0.29

BASIN P-1B

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	((Orifices, cf	s	Riser	Weirs, cfs		Pf Riser	Exfil	User	Total	
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	227.00	0.000	0.000					0.000				0.000		0.000
1.00	228.00	1,502	0.000 ic					0.000				0.337		0.337
2.00	229.00	3,802	0.000 ic					0.000				0.543		0.543
3.00	230.00	6,965	1.252 ic					1.252				0.668		1.920
3.00 4.00	230.00	6,965	1.252 ic 43.11 ic					1.252 43.11 s				0.668		1.920

12-13-2023

Hydrology Studio v 3.0.0.29

BASIN P-1B

Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.45	43.92
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.81	31.68
С	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one Cl	N source per line.			Totals =	1.26	75.61

75.61

1.26

Storm #2

10

5.01

1.31

=

Storm #3

100

7.83

3.20

=

Storm #1

2 3.23

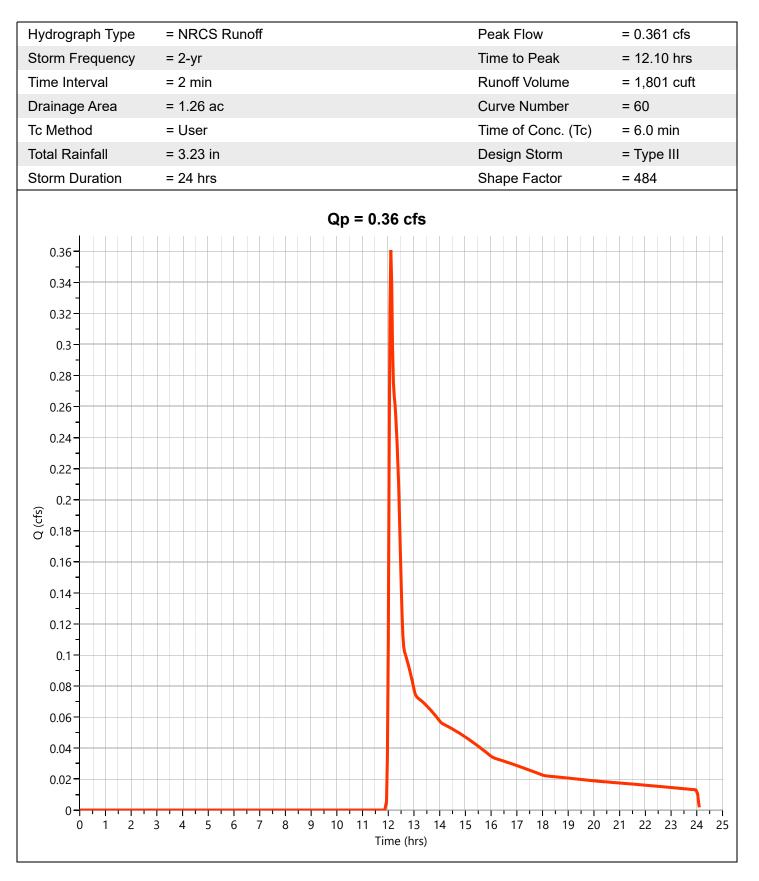
0.42

59.98;

Use CN =

60

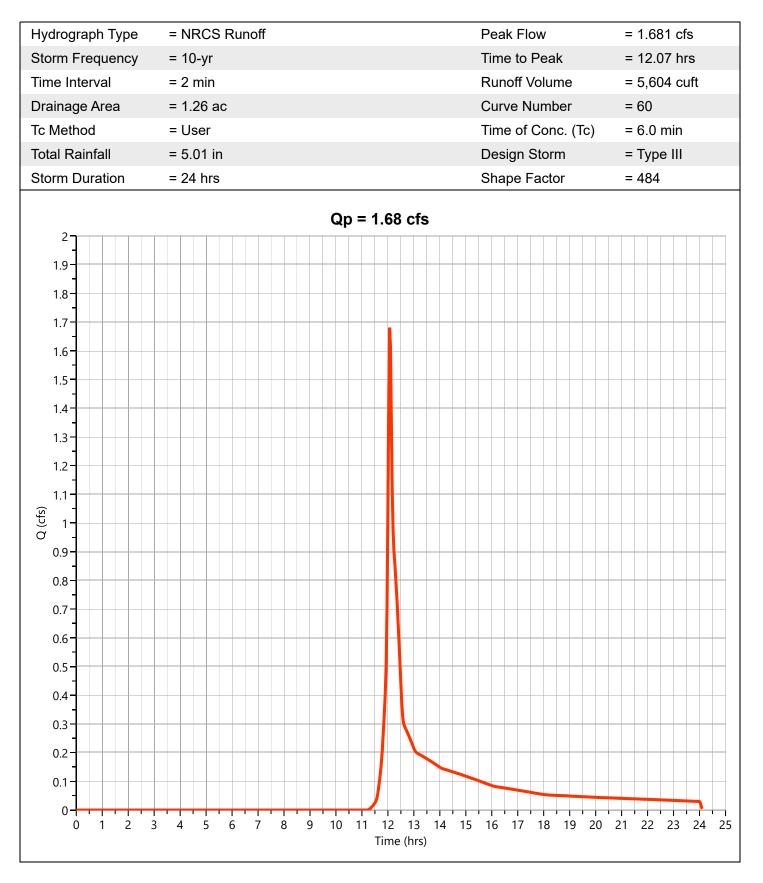
2. Runoff


Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,)	in

or eqs. 2-3 and 2-4.)

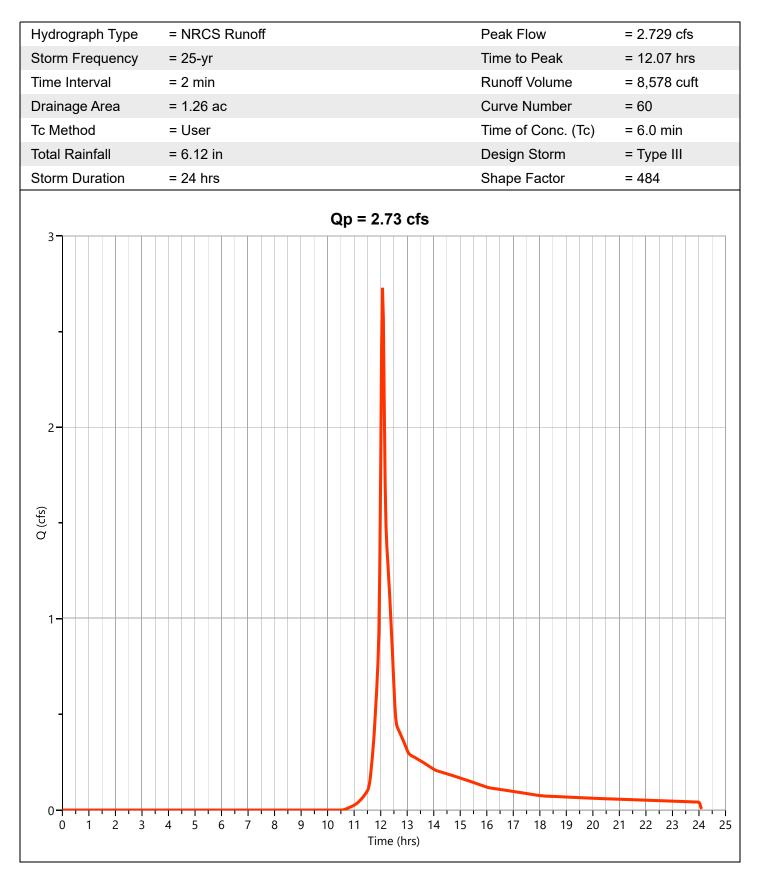
Hydrology Studio v 3.0.0.29

Subcatchment P-1C


12-13-2023

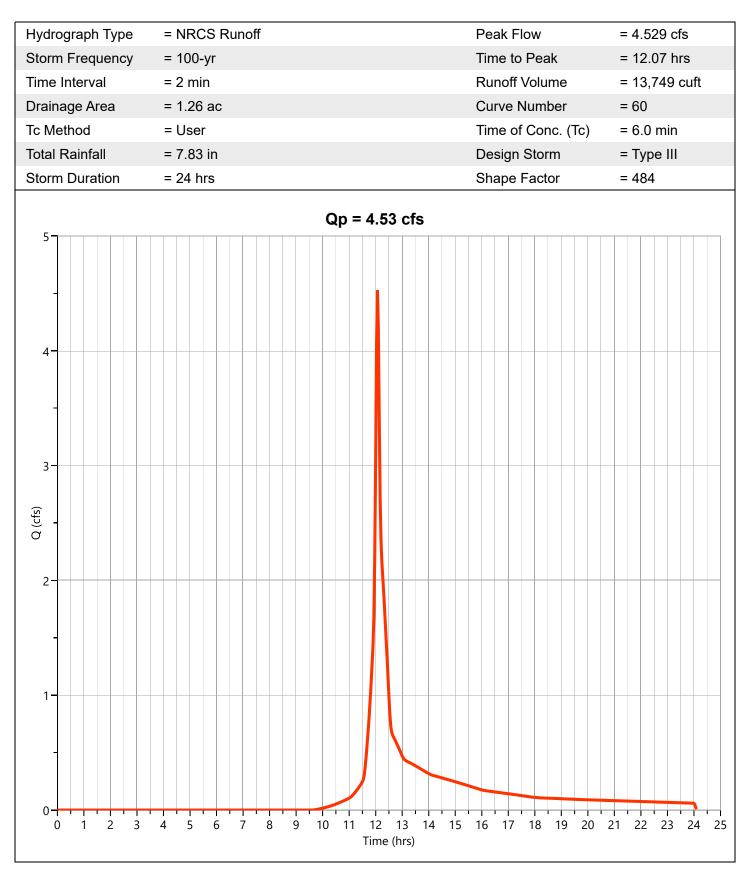
Hydrology Studio v 3.0.0.29

Subcatchment P-1C


12-13-2023

Hydrology Studio v 3.0.0.29

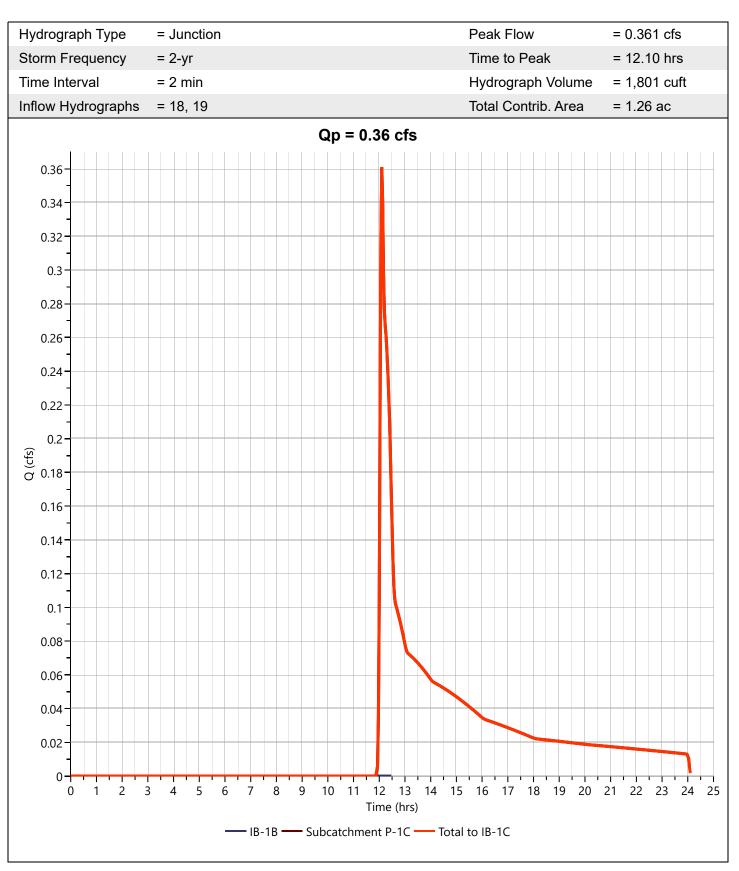
Subcatchment P-1C


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1C

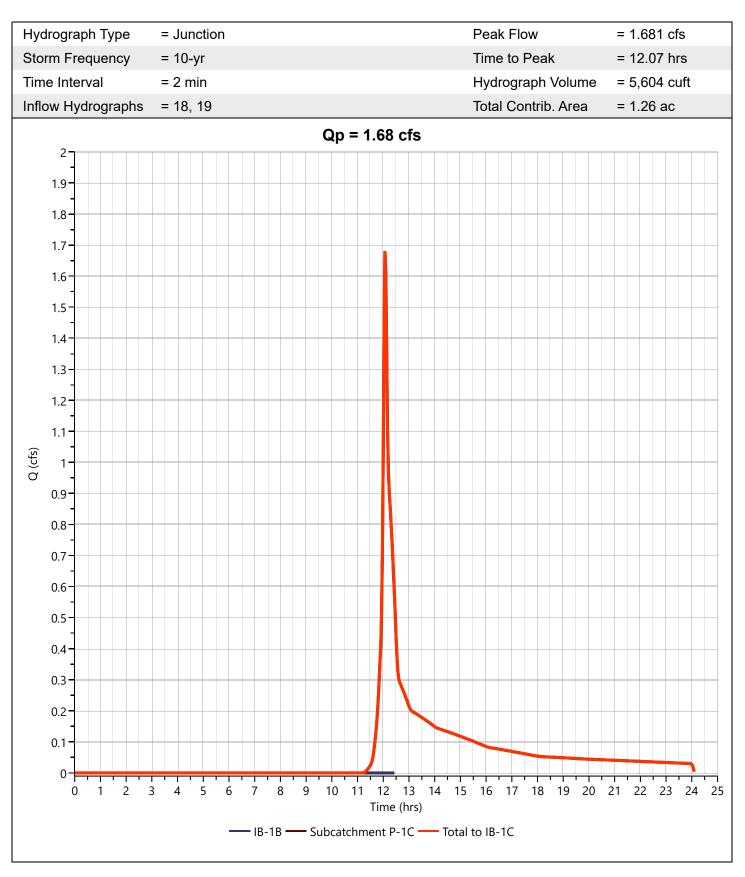
12-13-2023



Hydrology Studio v 3.0.0.29

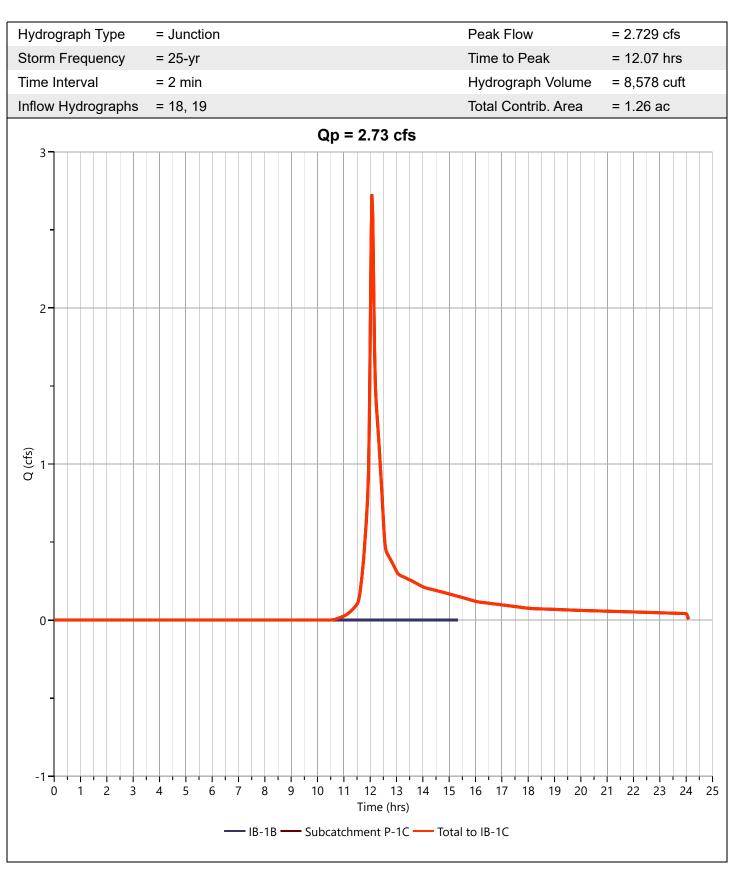
Total to IB-1C

12-13-2023


Project Name:

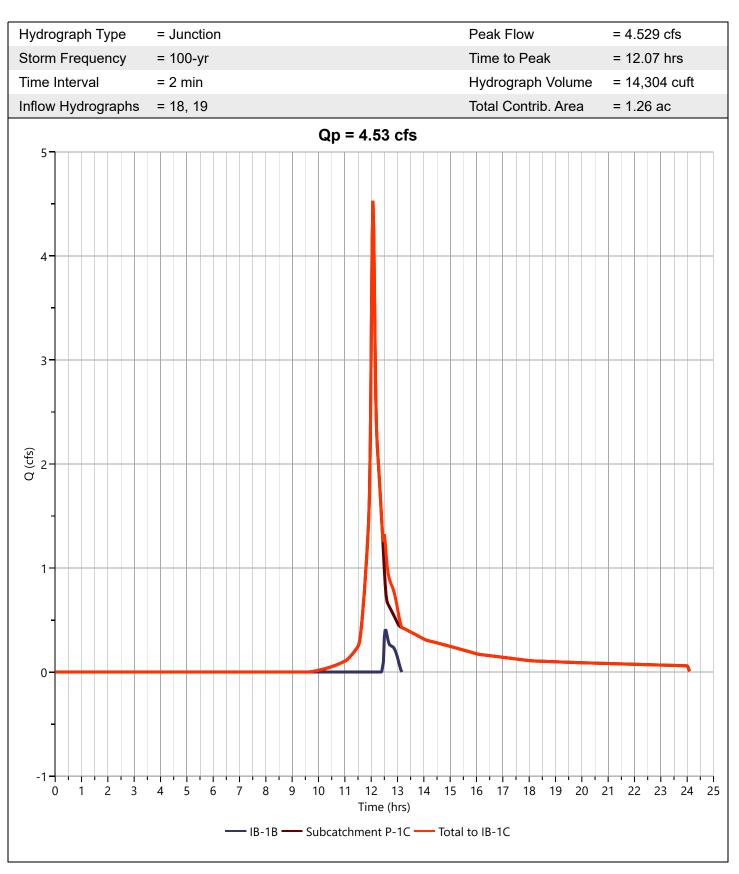
Hydrology Studio v 3.0.0.29

Total to IB-1C


12-13-2023

Hydrology Studio v 3.0.0.29

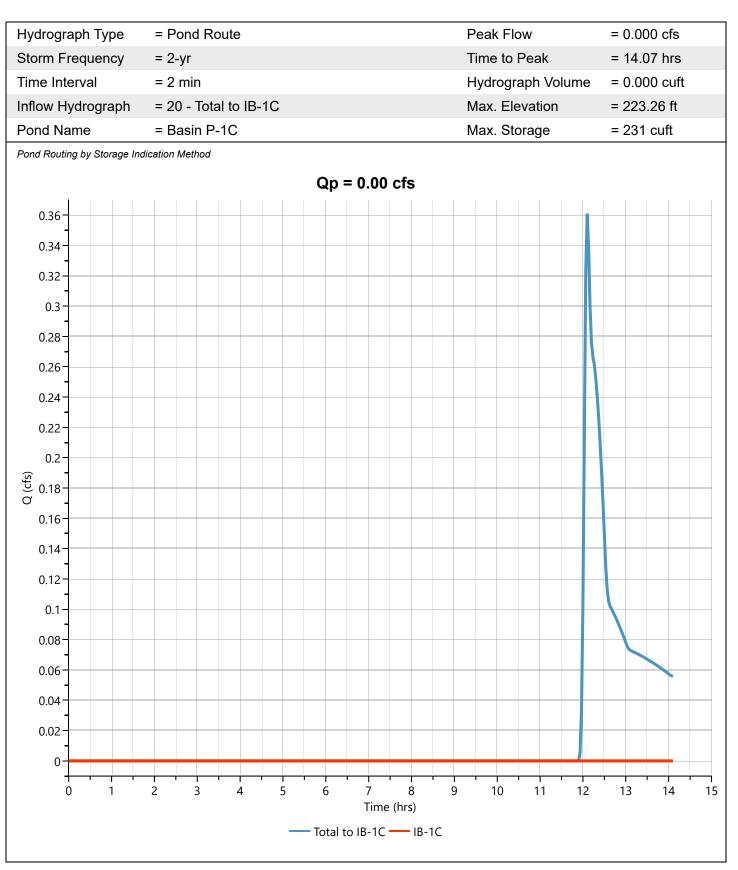
Total to IB-1C


12-13-2023

Hydrology Studio v 3.0.0.29

Total to IB-1C

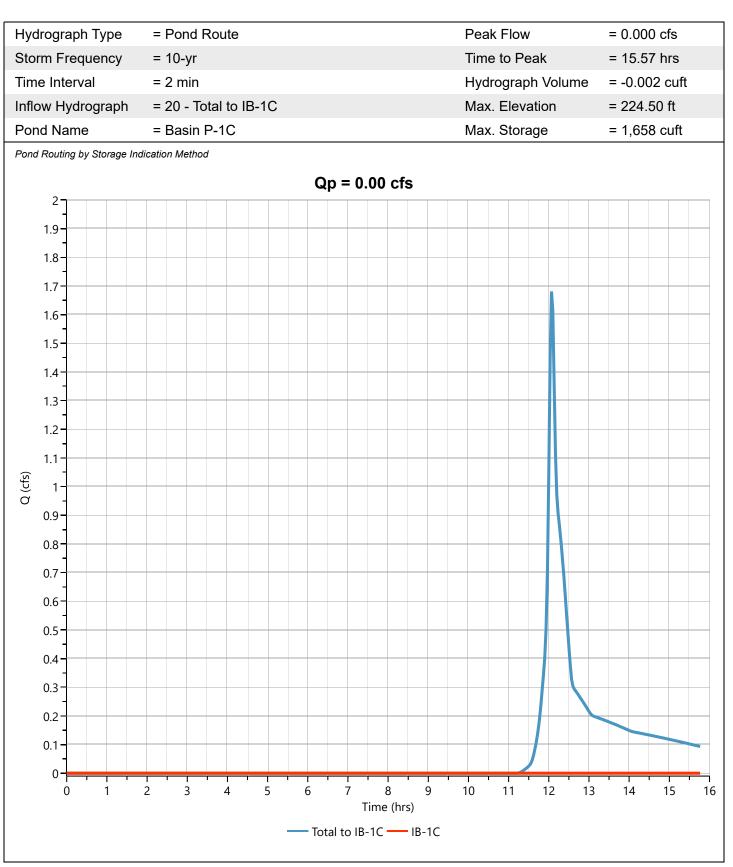
12-13-2023



Hydrology Studio v 3.0.0.29

IB-1C

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

IB-1C

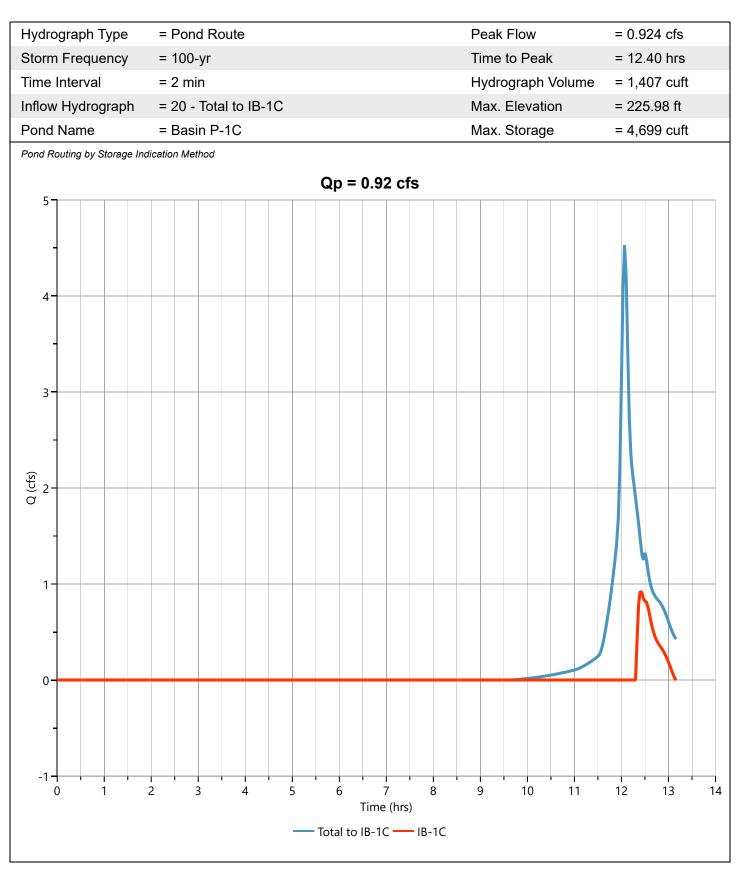
12-13-2023



Hydrology Studio v 3.0.0.29

IB-1C

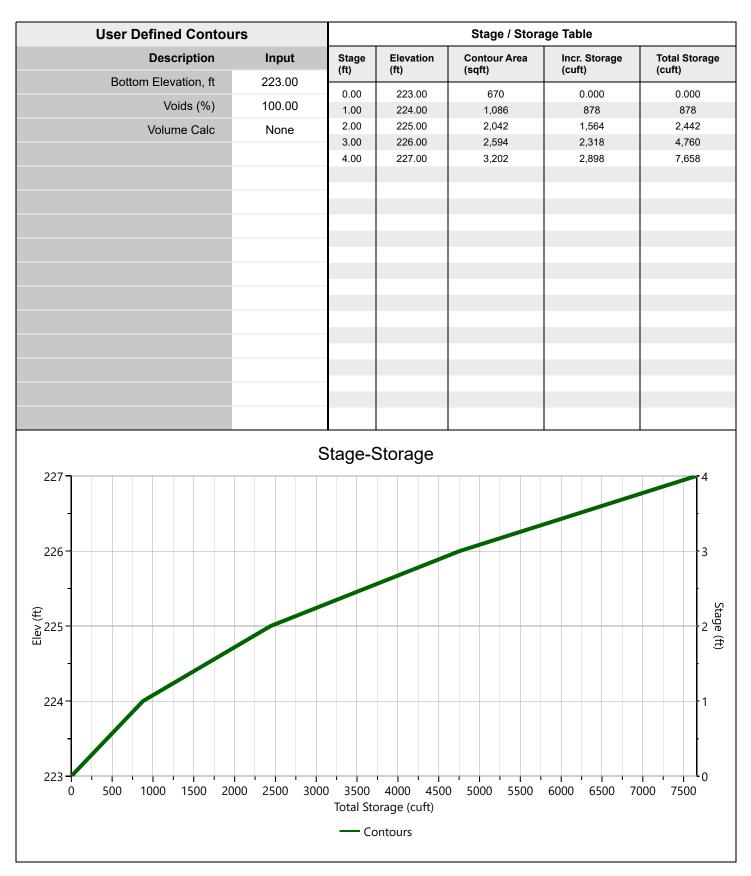
Project Name:


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1C

12-13-2023

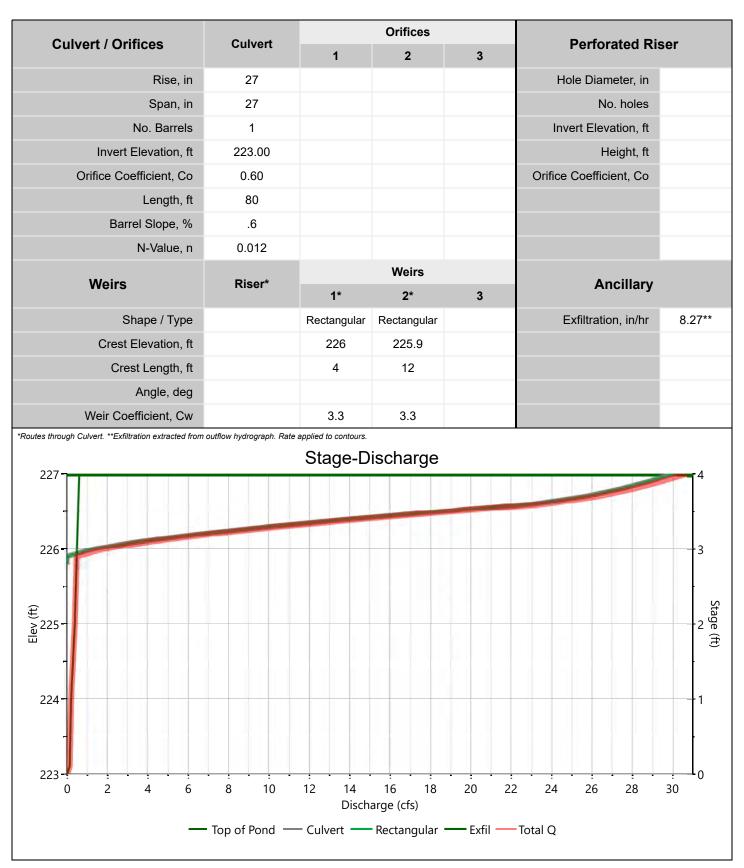

Hydrology Studio v 3.0.0.29

Basin P-1C

Project Name:

12-13-2023

Stage-Storage



Hydrology Studio v 3.0.0.29

Basin P-1C

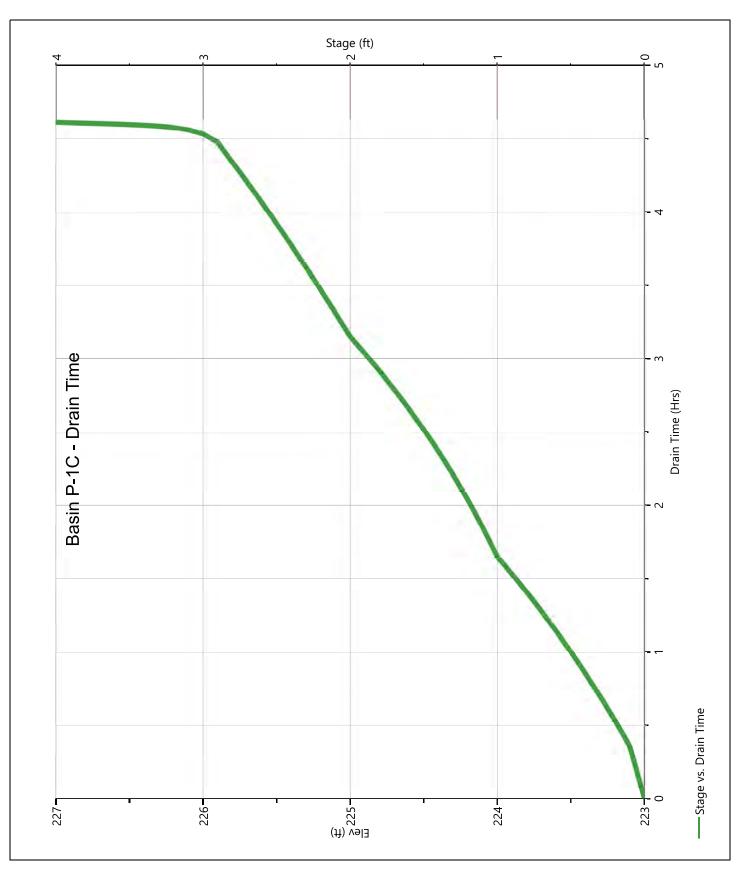
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

Basin P-1C

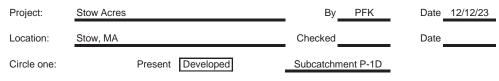
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	223.00	0.000	0.000					0.000	0.000			0.000		0.000
1.00	224.00	878	0.000					0.000	0.000			0.208		0.208
2.00	225.00	2,442	0.000					0.000	0.000			0.391		0.391
3.00	226.00	4,760	1.252 ic					0.000	1.252			0.497		1.749
3.00	226.00	4,760 7,658	1.252 ic 30.04 oc					0.000	1.252 30.04 s			0.497		1.749 30.65

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1C


Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.42	40.91
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.76	29.74
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one C	N source per line.			Totals =	1.18	70.65

70.65

1.18

Storm #2

10

5.01

1.30

=

Storm #1

2 3.23

0.42

=

Storm #3

100

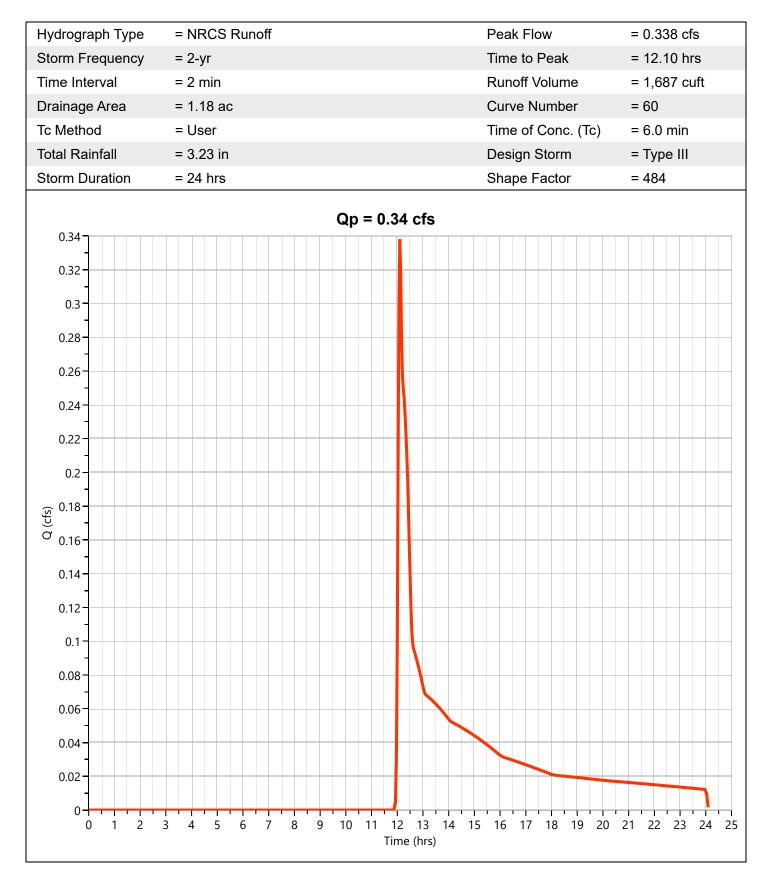
7.83

3.19

59.87 ;

Use CN =

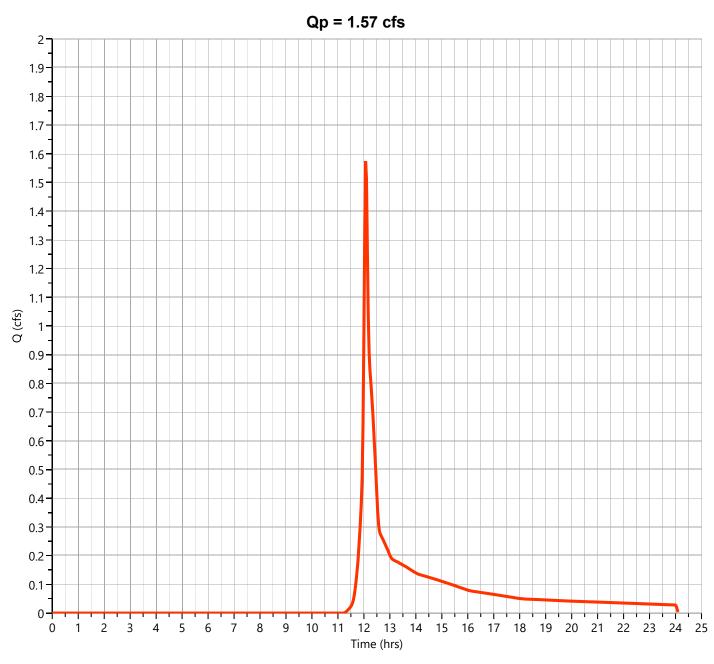
60


2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Hydrology Studio v 3.0.0.29

Subcatchment P-1D

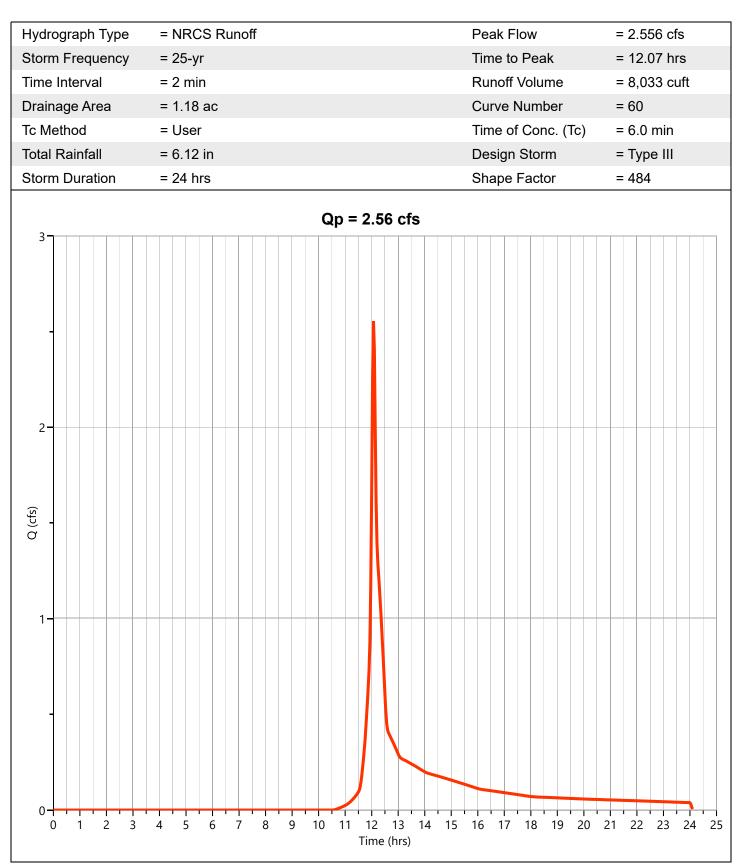

12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1D

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.574 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.07 hrs
Time Interval	= 2 min	Runoff Volume	= 5,248 cuft
Drainage Area	= 1.18 ac	Curve Number	= 60
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min
Total Rainfall	= 5.01 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

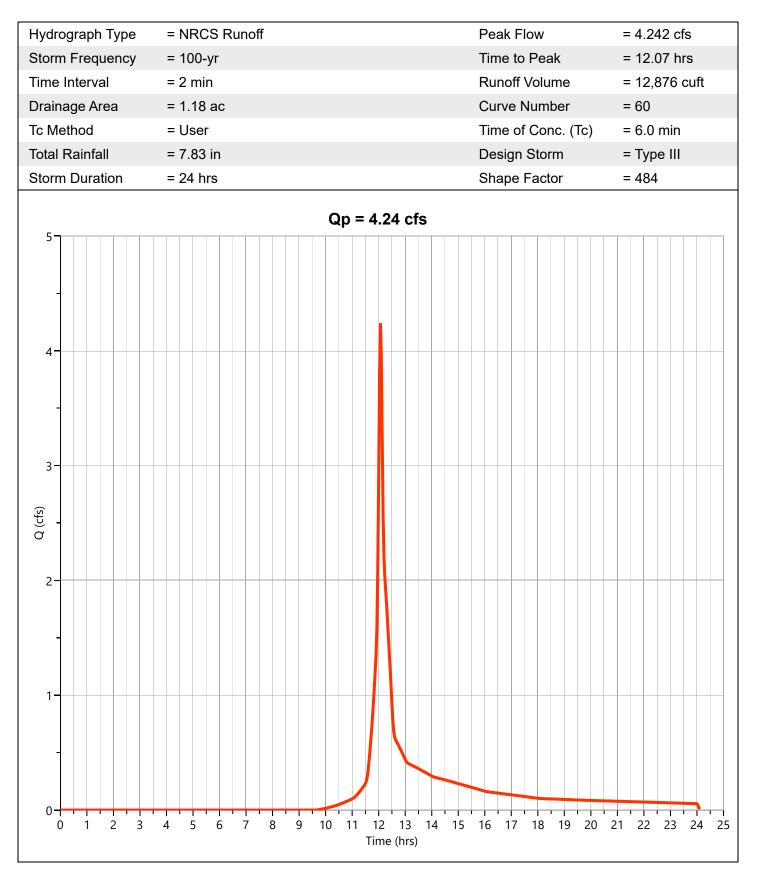
Hyd. No. 22


12-13-2023

٦

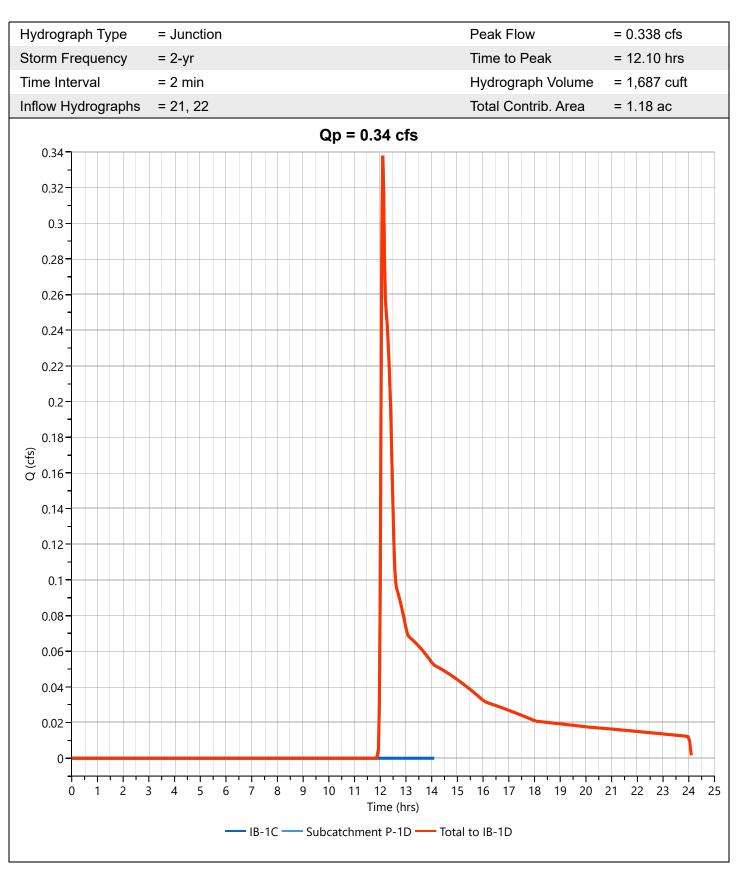
Hydrology Studio v 3.0.0.29

Subcatchment P-1D


12-13-2023

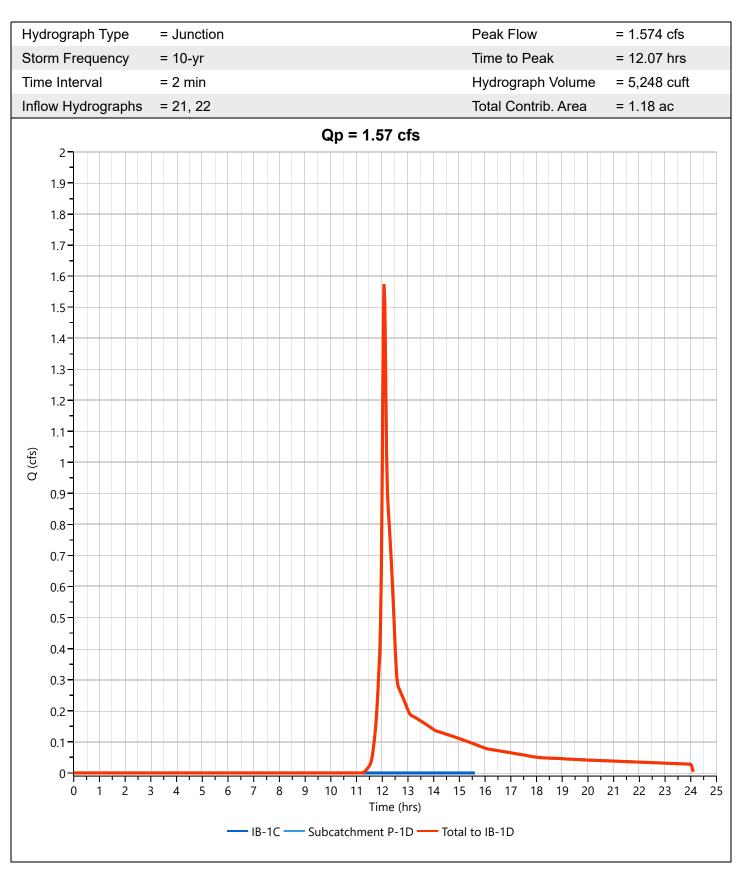
Hydrology Studio v 3.0.0.29

Subcatchment P-1D


12-13-2023

Hydrology Studio v 3.0.0.29

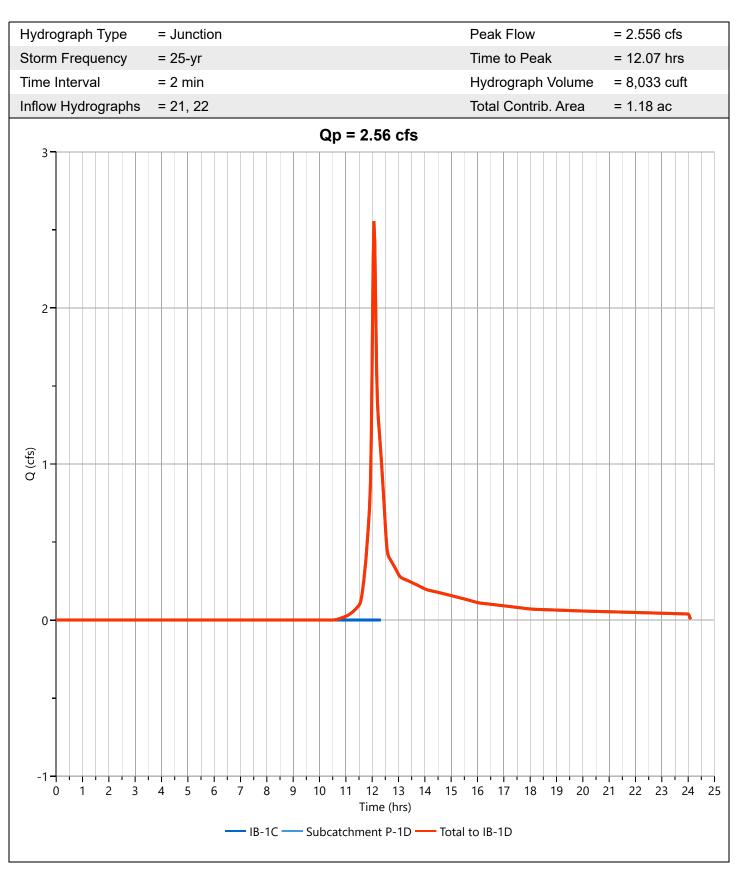
Total to IB-1D


12-13-2023

Hydrology Studio v 3.0.0.29

Total to IB-1D

12-13-2023

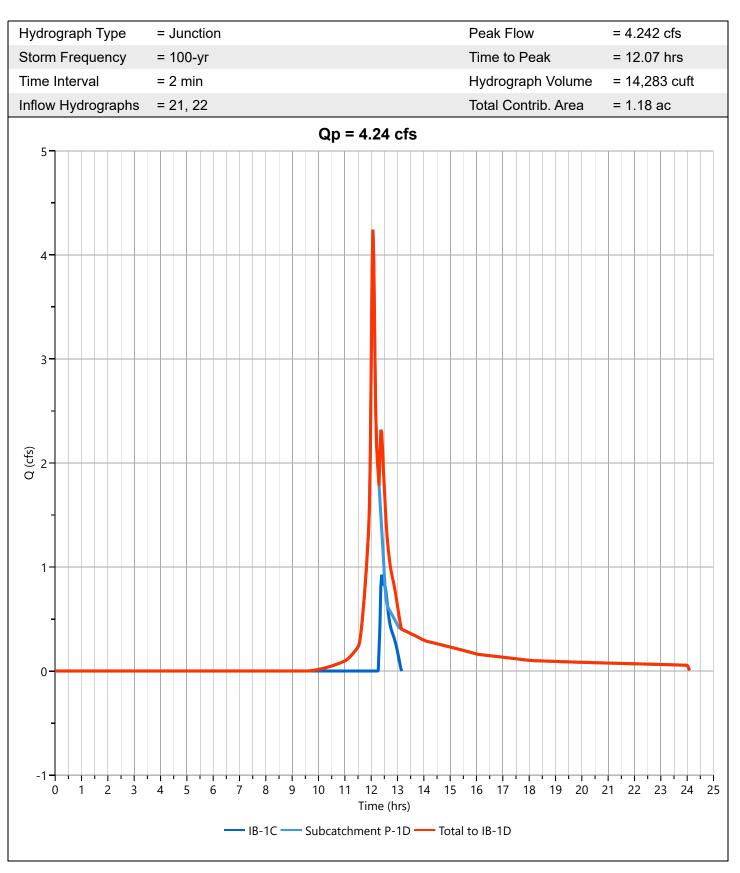


Hydrology Studio v 3.0.0.29

Total to IB-1D

Project Name:

12-13-2023



Hydrology Studio v 3.0.0.29

Total to IB-1D

12-13-2023

Project Name:

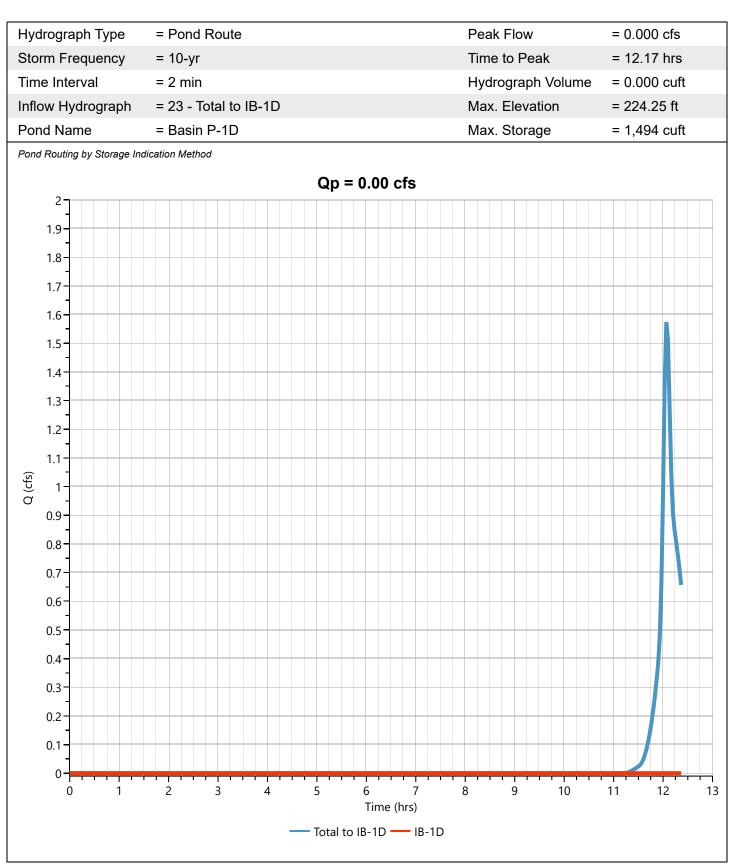
Hydrology Studio v 3.0.0.29

IB-1D

12-13-2023

Hyd. No. 24

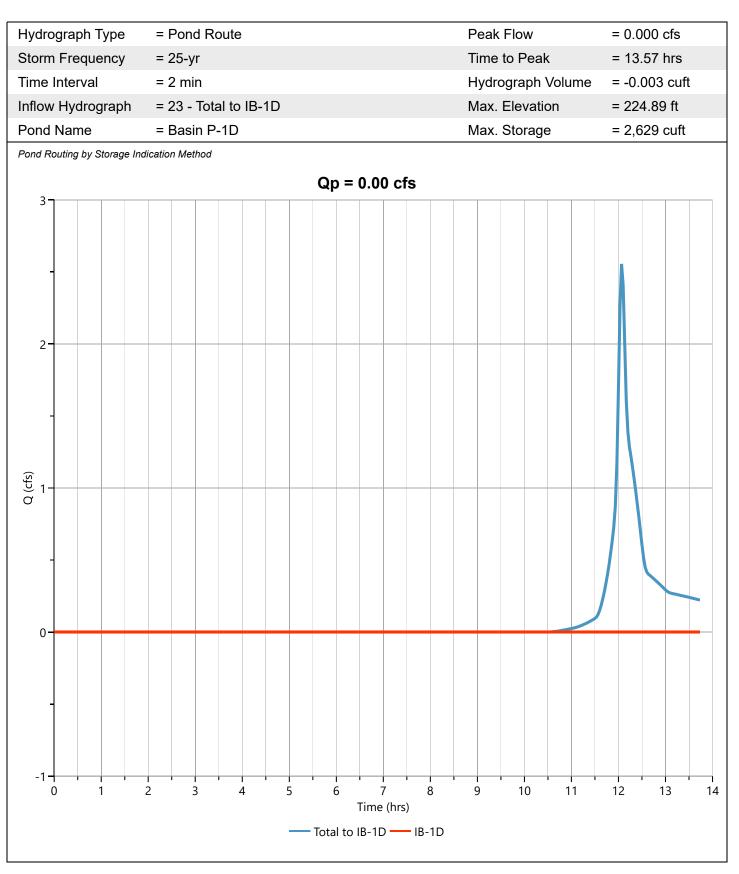
·			
Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 23 - Total to IB-1D	Max. Elevation	= 223.16 ft
Pond Name	= Basin P-1D	Max. Storage	= 171 cuft


Pond Routing by Storage Indication Method

Qp = 0.00 cfs

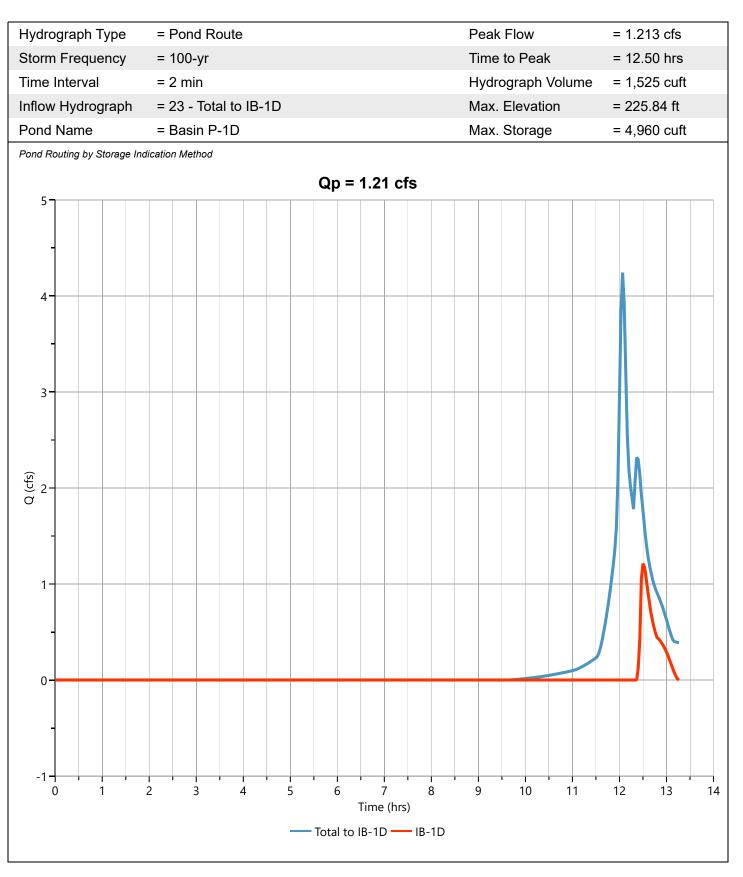
Hydrology Studio v 3.0.0.29

IB-1D


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1D


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1D

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1D

12-13-2023

Stage-Storage

U	ser Defined	Contours	5	Stage / Storage Table						
	Descri		Input	Stage (ft)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)		
	Bottom Elevat	tion, ft	223.00	0.00	223.00	833	0.000	0.000		
	Void	ls (%)	100.00	1.00	224.00	1,278	1,056	1,056		
	Volume Calc		None	2.00	225.00	2,249	1,764	2,819		
				3.00	226.00	2,841	2,545	5,364		
				4.00	227.00	3,489	3,165	8,529		
							I			
				Stage-S	Storage					
227								4		
226-										
220								5		
Ê 225								-2 9		
4										
224-										
223		I		-				<u> </u>		
0	1000	2000	3000	4000		6000	7000	8000		
				Total Sto	orage (cuft)					

Culvert / Orifices

Weirs

Rise, in

Span, in

No. Barrels

Length, ft

N-Value, n

Shape / Type

Crest Elevation, ft

Weir Coefficient, Cw

Crest Length, ft

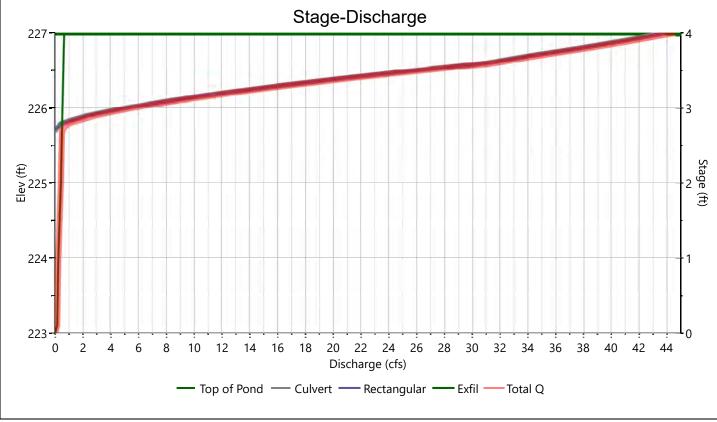
Angle, deg

Invert Elevation, ft

Barrel Slope, %

Orifice Coefficient, Co

Hydrology Studio v 3.0.0.29


Basin P-1D

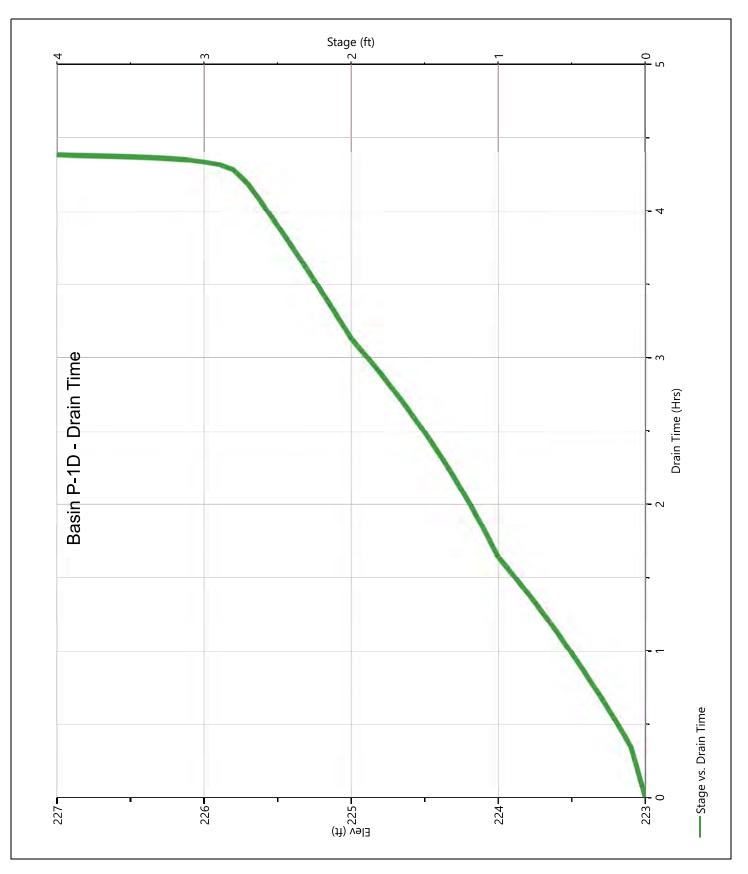
Stage-Discharge

12-13-2023

Orifices Culvert **Perforated Riser** 2 1 3 Hole Diameter, in 36 36 No. holes 1 Invert Elevation, ft 223.00 Height, ft 0.60 Orifice Coefficient, Co 65 1 0.012 Weirs **Riser*** Ancillary 2 1* 3 Exfiltration, in/hr Rectangular 8.27** 225.75 12 3.3 Stage-Discharge 3 2

Hydrology Studio v 3.0.0.29

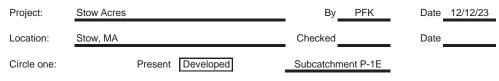
Basin P-1D


Stage-Storage-Discharge Summary

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1D



12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area			
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres				
-	Impervious	98			1.94	190.55			
А	Woods - Good Condition	30			0.00	0.00			
А	Open Space - Good Condition	39			2.40	93.48			
С	Woods - Good Condition	70			0.00	0.00			
С	Open Space - Good Condition	74			0.00	0.00			
D	BVW	77			0.00	0.00			
А	Gravel	76			0.00	0.00			
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00			
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00			
1/ Use only one C	CN source per line.			Totals =	4.34	284.03			

284.03

4.34

Storm #2

10

5.01 1.69 =

Storm #3

7.83

3.80

=

Storm #1

2

3.23

0.63

CN (weighted) = total product total area

65.43;

65

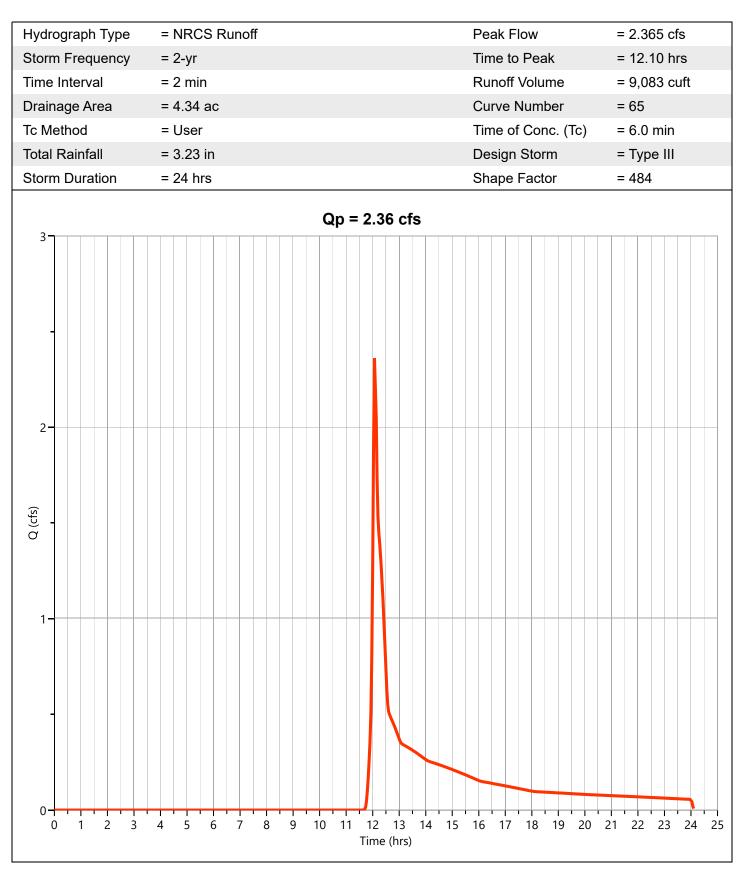
Use CN =

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

 Runoff, Q......
 in

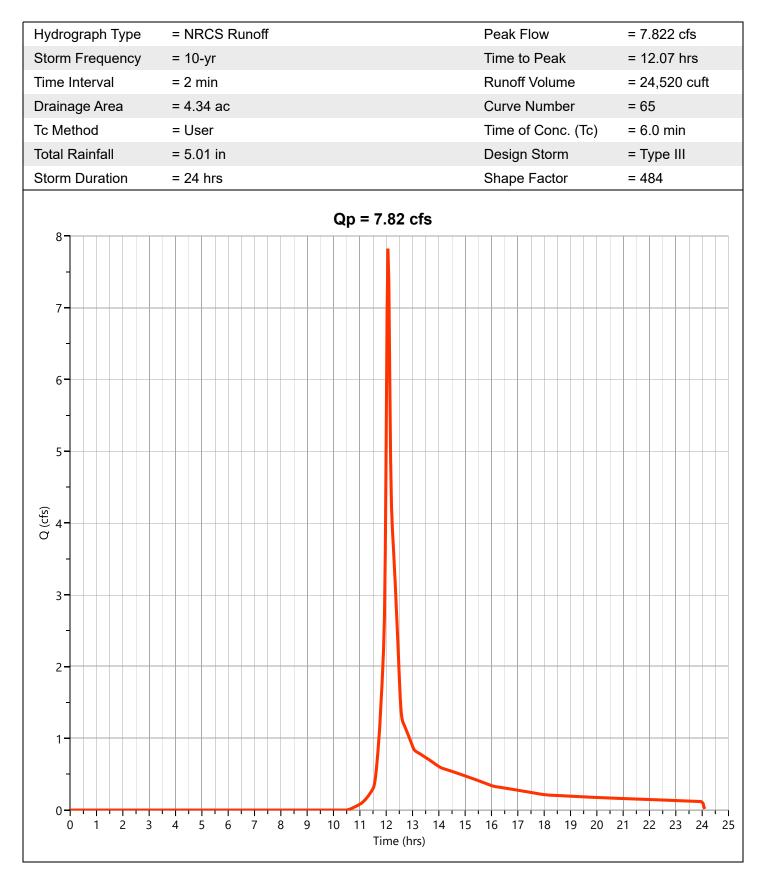

 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

Hydrology Studio v 3.0.0.29

Subcatchment P-1E

12-13-2023

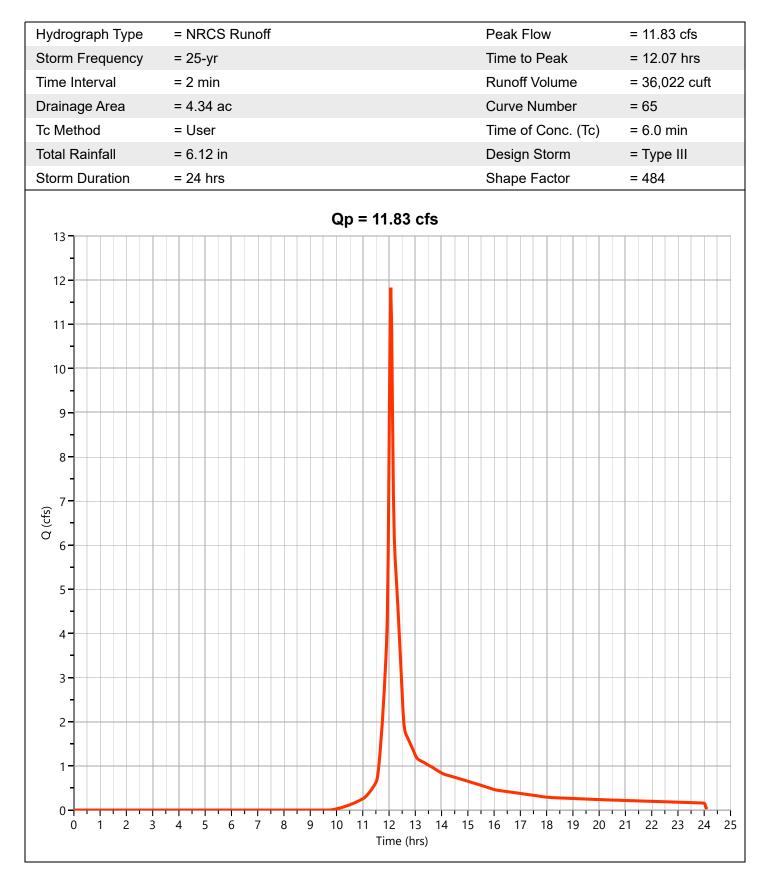
Hyd. No. 25



Project Name:

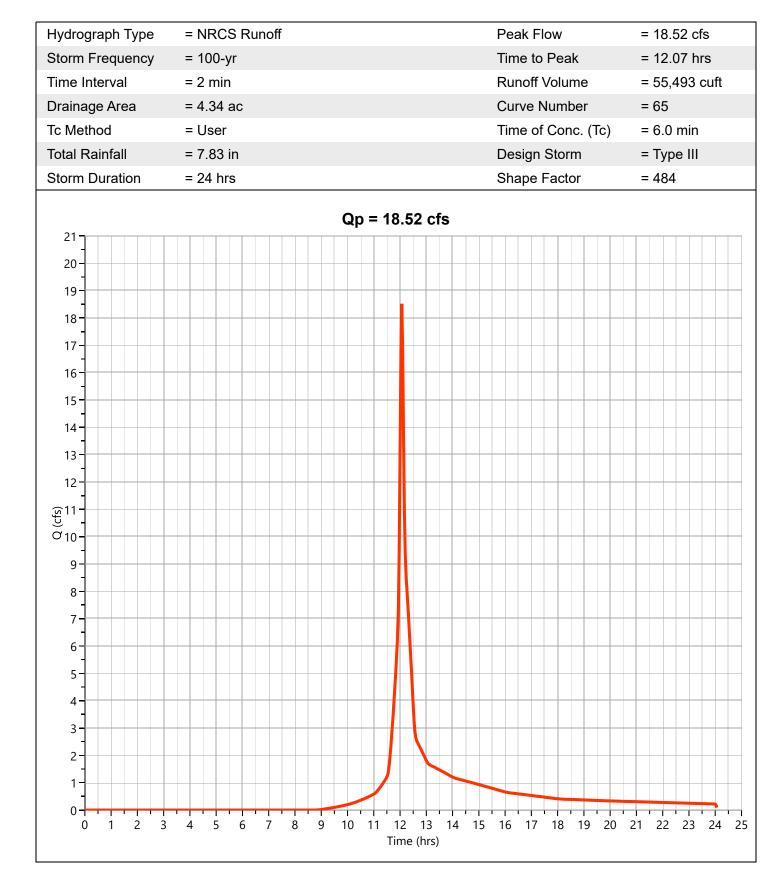
Hydrology Studio v 3.0.0.29

Subcatchment P-1E


12-13-2023

Hydrology Studio v 3.0.0.29

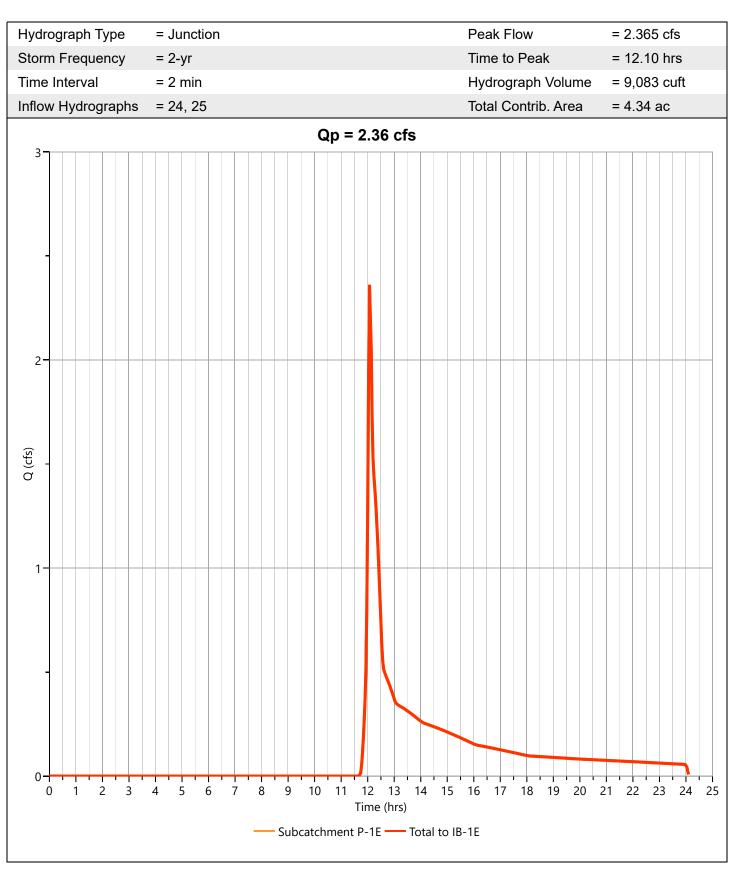
Subcatchment P-1E


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1E

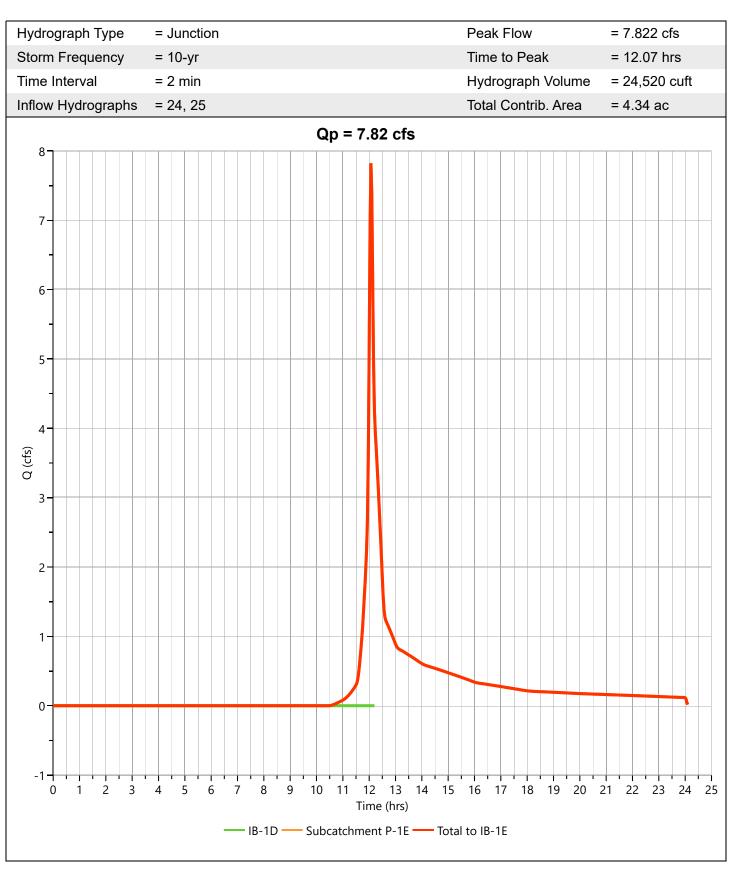
Hyd. No. 25



12-13-2023

Hydrology Studio v 3.0.0.29

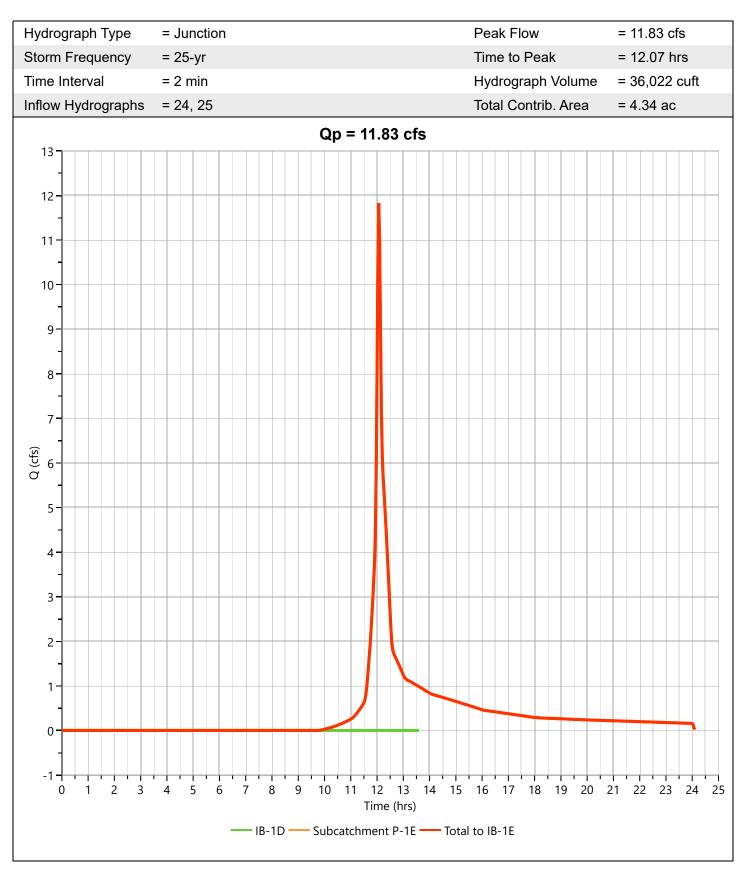
Total to IB-1E


12-13-2023

Hydrology Studio v 3.0.0.29

Total to IB-1E

Project Name: 12-13-2023

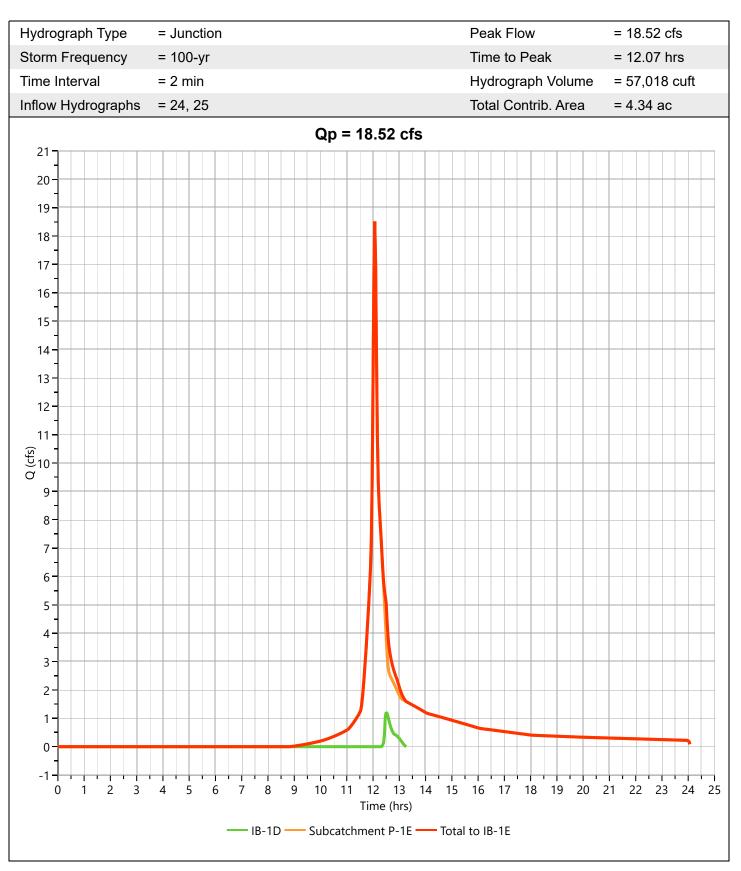


Hydrology Studio v 3.0.0.29

Total to IB-1E

12-13-2023

Project Name:



Hydrology Studio v 3.0.0.29

Total to IB-1E

12-13-2023

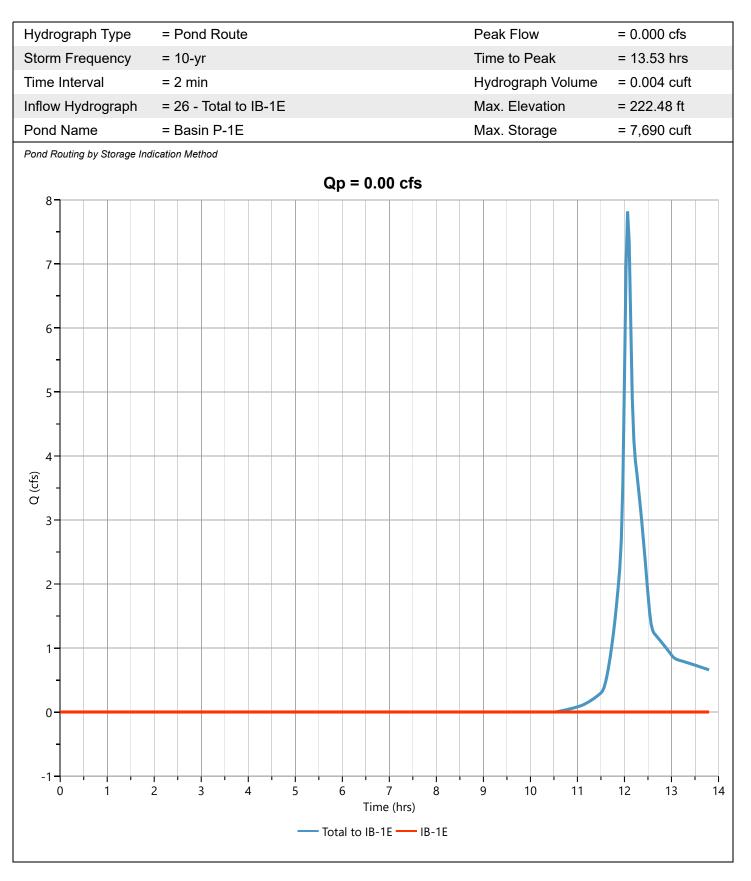
Project Name:

Hydrology Studio v 3.0.0.29

IB-1E

Project Name:

12-13-2023

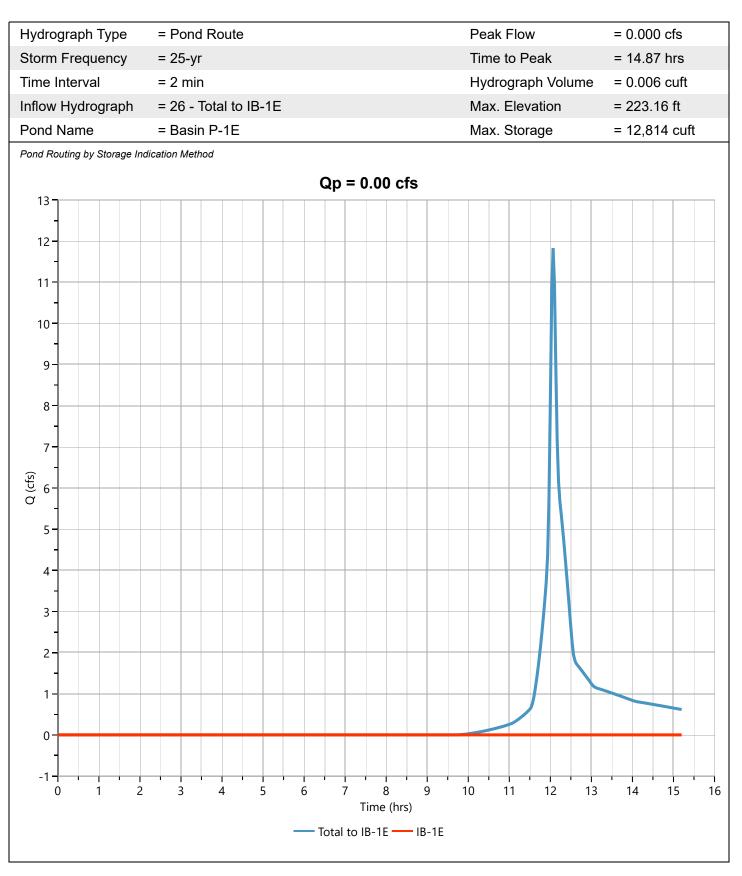

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.03 hrs
Time Interval	= 2 min	Hydrograph Volume	= 0.005 cuft
Inflow Hydrograph	= 26 - Total to IB-1E	Max. Elevation	= 221.39 ft
Pond Name	= Basin P-1E	Max. Storage	= 1,703 cuft
Pond Routing by Storage Inc	lication Method		
	Qp = 0.00 cfs		
3			
2- (\$ 5) 0 1-			
0 	2 3 4 5 6 7 8 Time (hrs) — Total to IB-1E — IB-1E		11 12 13

Hydrology Studio v 3.0.0.29

IB-1E

12-13-2023

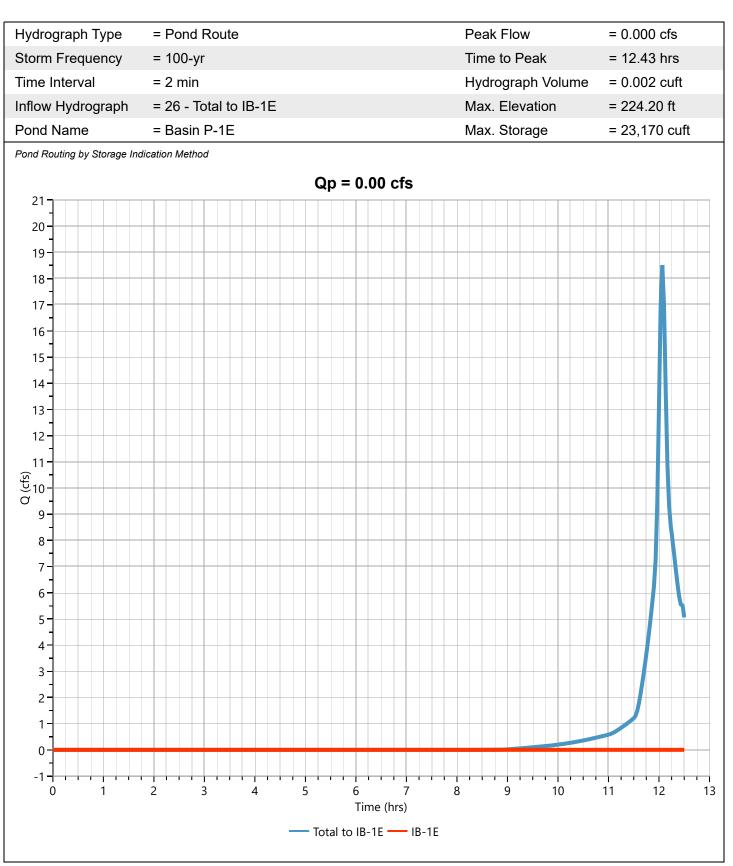
Hyd. No. 27



Project Name:

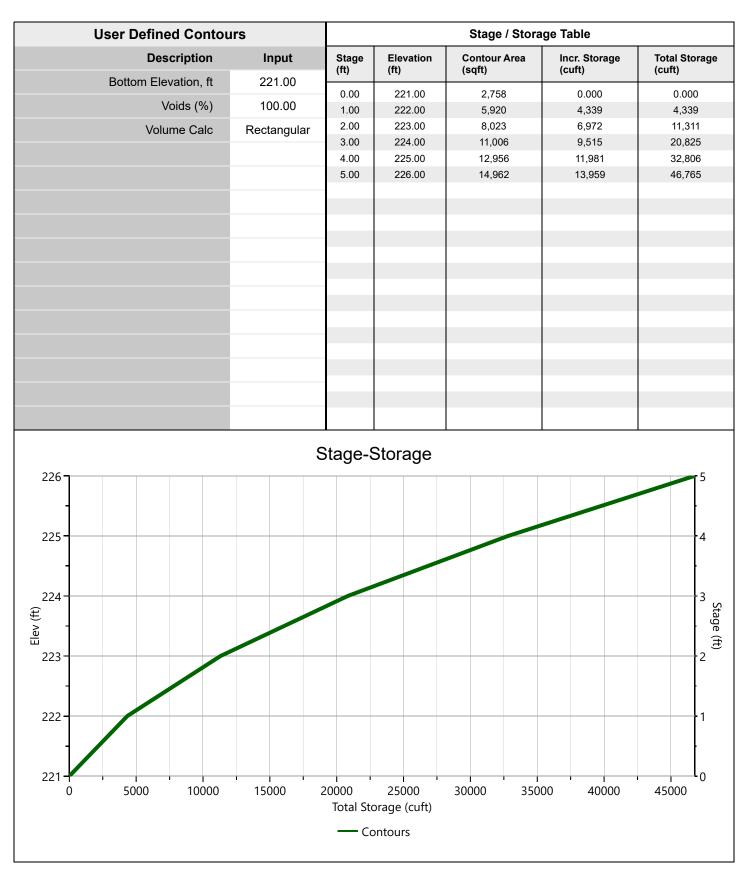
Hydrology Studio v 3.0.0.29

IB-1E


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1E


12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1E

Stage-Storage

12-13-2023

Culvert / Orifices

Weirs

226

225-

224

223

222

221

0

5

10

15

20

Elev (ft)

Hydrology Studio v 3.0.0.29

Basin P-1E

0

55

45

50

12-13-2023

Orifices Culvert **Perforated Riser** 2 1 3 30 Hole Diameter, in Rise, in No. holes Span, in 30 No. Barrels 1 Invert Elevation, ft Invert Elevation, ft 218.70 Height, ft Orifice Coefficient, Co 0.60 Orifice Coefficient, Co 168 Length, ft Barrel Slope, % 1 N-Value, n 0.012 Weirs **Riser*** Ancillary 2* 3 1 Exfiltration, in/hr 8.27** Shape / Type Rectangular Crest Elevation, ft 224.5 Crest Length, ft 12 Angle, deg Weir Coefficient, Cw 3.3 Stage-Discharge 4 3 Stage (ft) 2 1

Stage-Discharge

*Routes through Culvert. **Exfiltration extracted from outflow hydrograph. Rate applied to contours.

– Top of Pond –— Culvert –— Rectangular –— Exfil –— Total Q

25

30

Discharge (cfs)

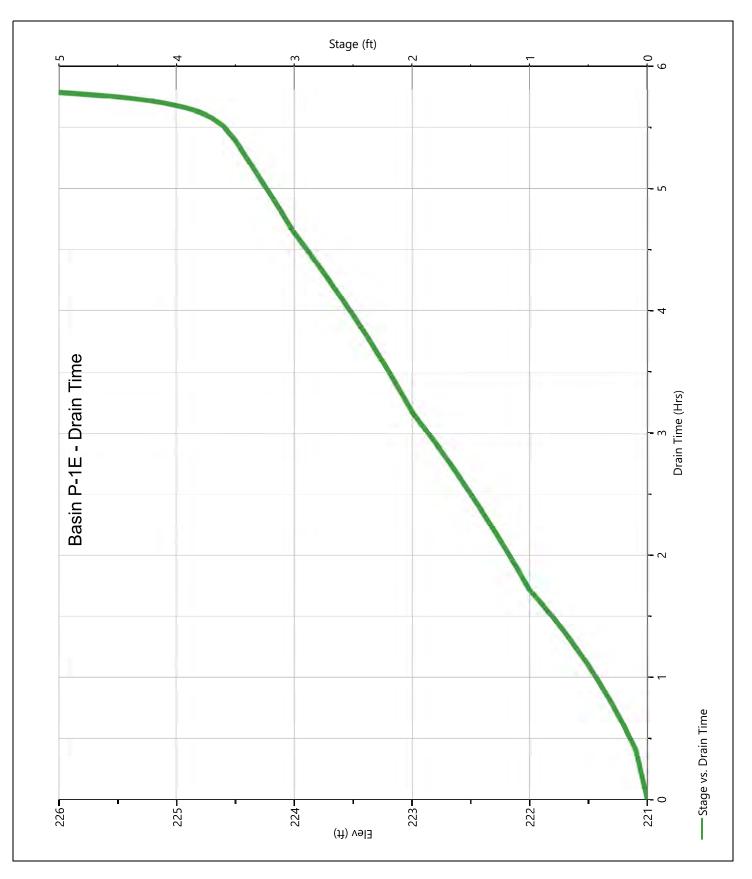
35

40

Hydrology Studio v 3.0.0.29

Basin P-1E

Stage-Storage-Discharge Summary


Stage	Elev. (ft)	Storage (cuft)	ge Culvert (cfs)	Orifices, cfs		Riser		Weirs, cfs		Pf Riser	Exfil User		Total	
(ft)				1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	221.00	0.000	0.000						0.000			0.000		0.000
1.00	222.00	4,339	0.000 ic						0.000			1.133		1.133
2.00	223.00	11,311	0.000 ic						0.000			1.536		1.536
3.00	224.00	20,825	0.000 ic						0.000			2.107		2.107
4.00	225.00	32,806	14.00 ic						14.00			2.480		16.48
5.00	226.00	46,765	55.44 ic						55.44 s			2.864		58.30

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1E

Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			1.65	161.51
А	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			4.32	168.59
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one C	CN source per line.			Totals =	5.97	330.10

330.10

5.97

Storm #2

10

5.01

1.00

=

Storm #3

7.83

2.70

=

Storm #1

2

3.23

0.27

CN (weighted) = total product total area

55.29;

Use CN =

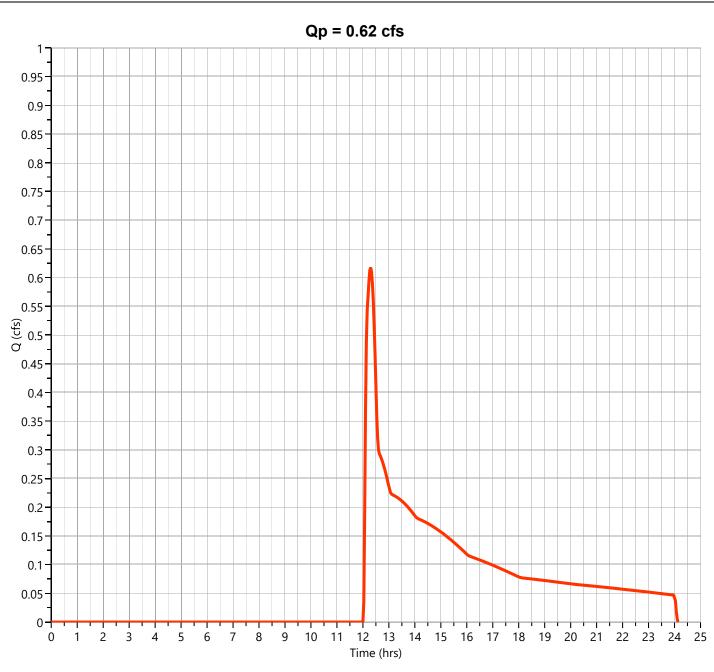
55

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

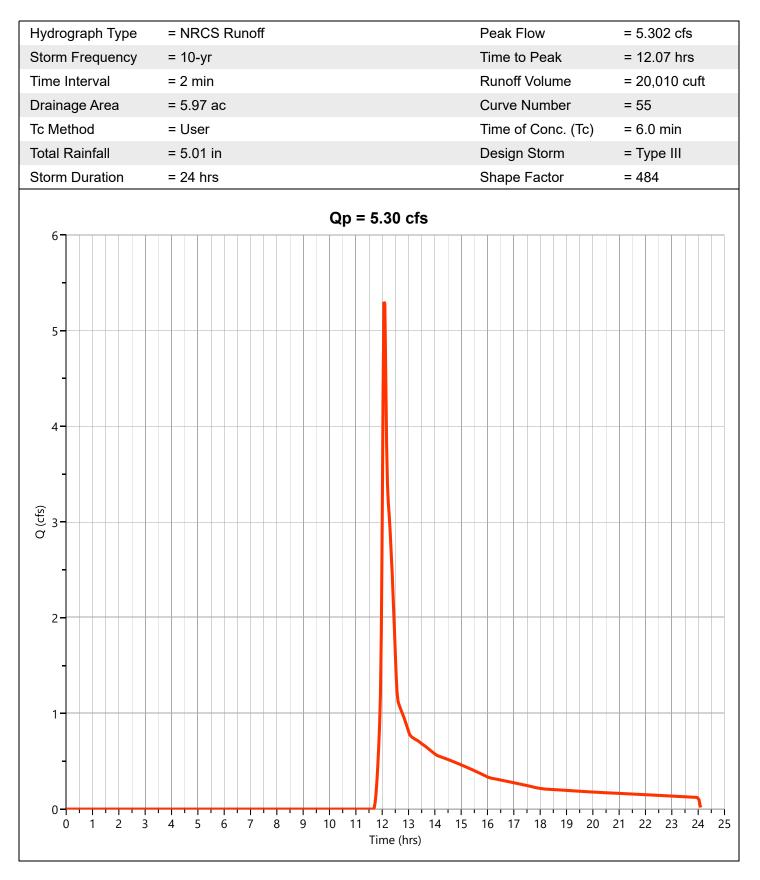
 Runoff, Q......
 in


 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

Hydrology Studio v 3.0.0.29

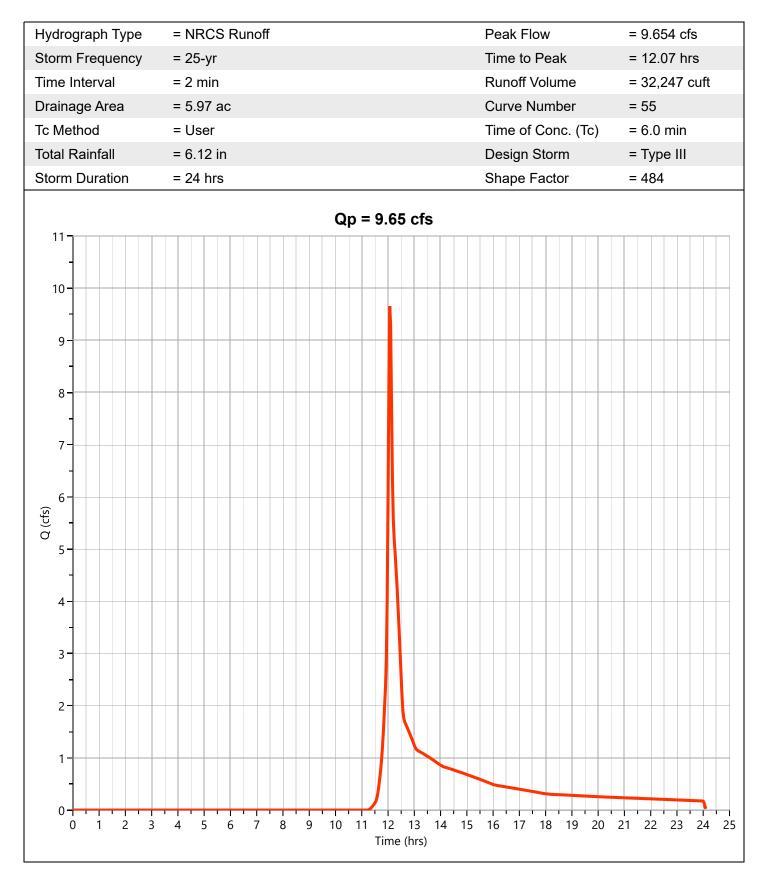
Subcatchment P-1F

Hydrograph Type Peak Flow = NRCS Runoff = 0.618 cfs Storm Frequency Time to Peak = 12.30 hrs = 2-yr Time Interval = 2 min **Runoff Volume** = 5,277 cuft = 5.97 ac **Curve Number** = 55 Drainage Area Tc Method = User Time of Conc. (Tc) = 6.0 min **Total Rainfall** = 3.23 in **Design Storm** = Type III Storm Duration = 24 hrs Shape Factor = 484



Hyd. No. 28

12-13-2023


Hydrology Studio v 3.0.0.29

Subcatchment P-1F

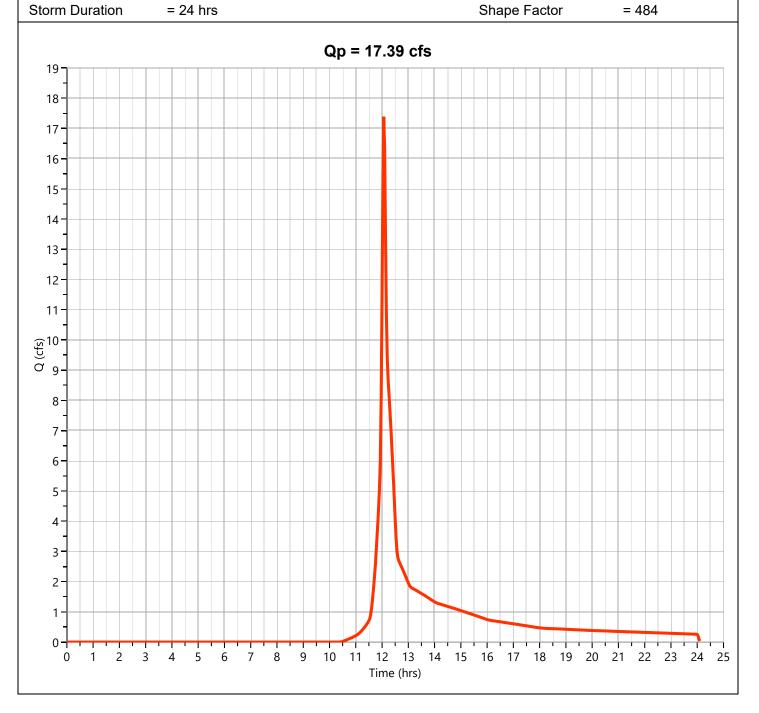
Hydrology Studio v 3.0.0.29

Subcatchment P-1F

Hydrology Studio v 3.0.0.29

Subcatchment P-1F

Hydrograph Type	= NRCS Runoff	Peak Flow	= 17.39 cfs
Storm Frequency	= 100-yr	Time to Peak	= 12.07 hrs
Time Interval	= 2 min	Runoff Volume	= 54,215 cuft
Drainage Area	= 5.97 ac	Curve Number	= 55


Time of Conc. (Tc)

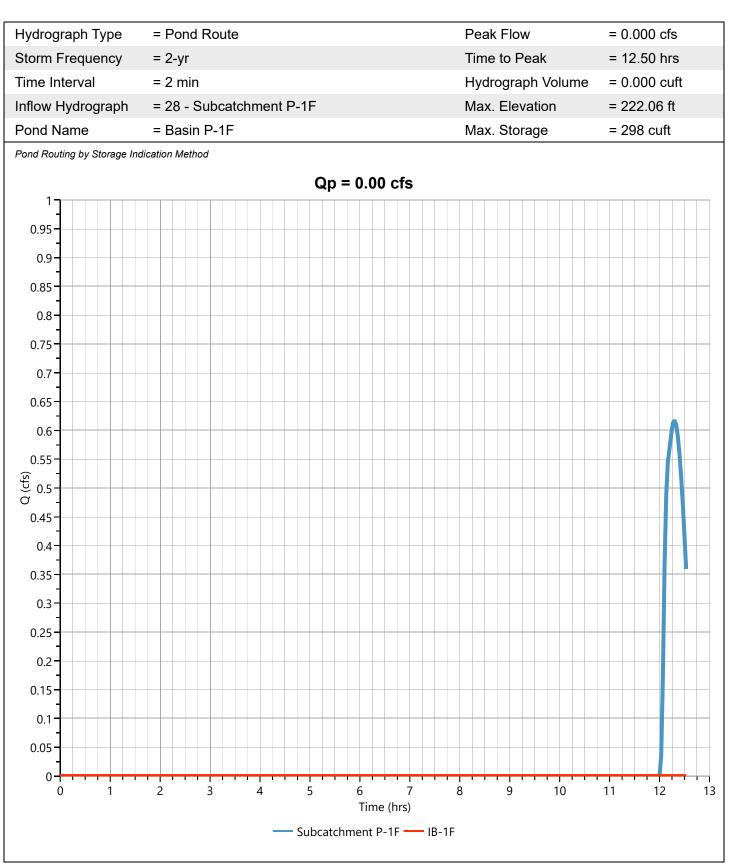
Design Storm

Tc Method Total Rainfall

= User

= 7.83 in

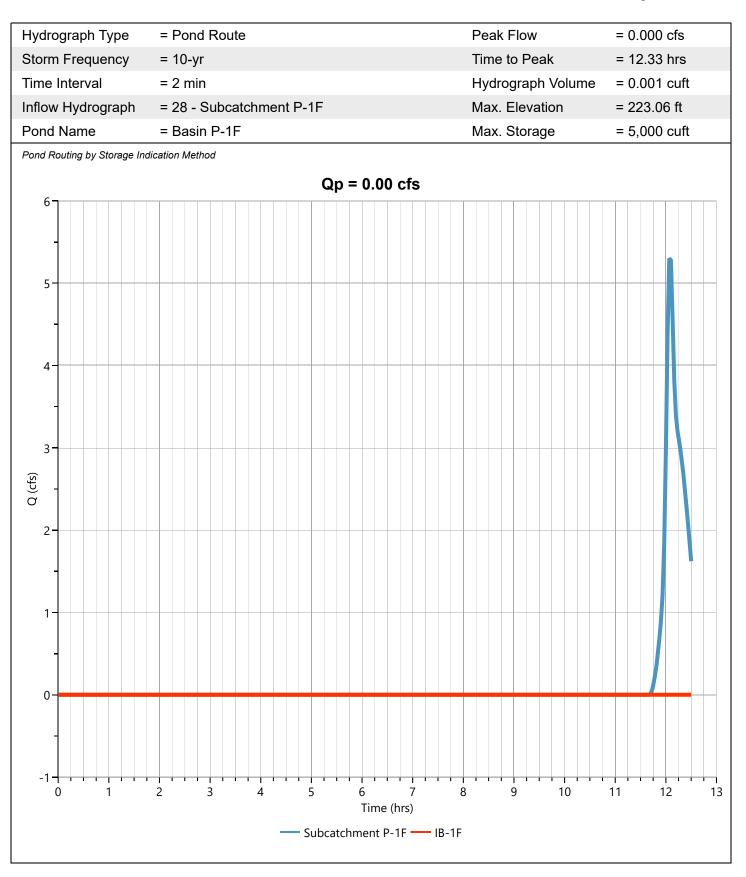
12-13-2023


= 6.0 min

= Type III

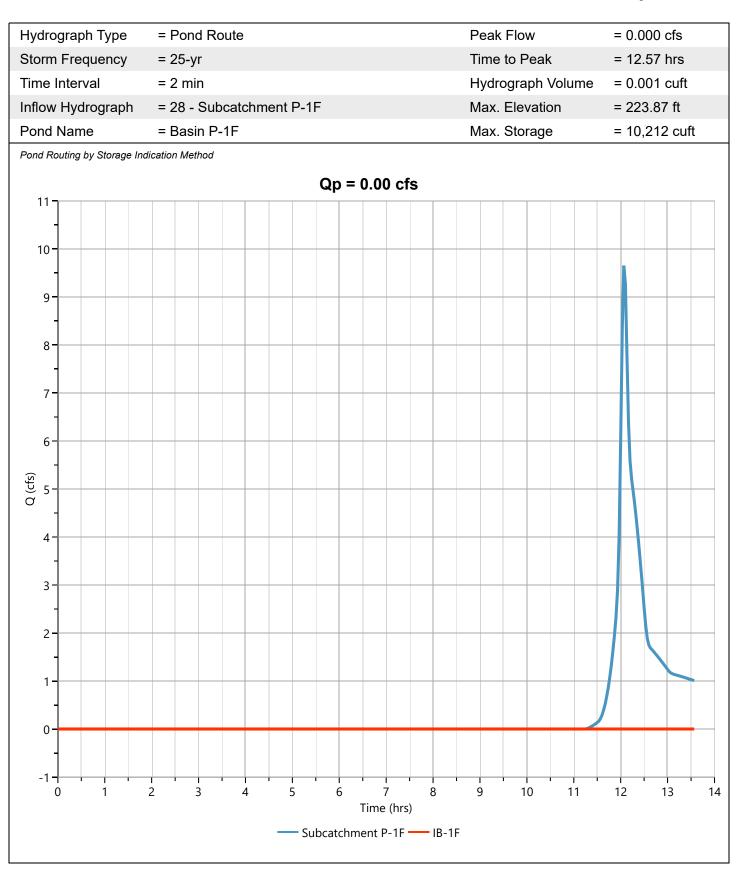
Hydrology Studio v 3.0.0.29

IB-1F


12-13-2023

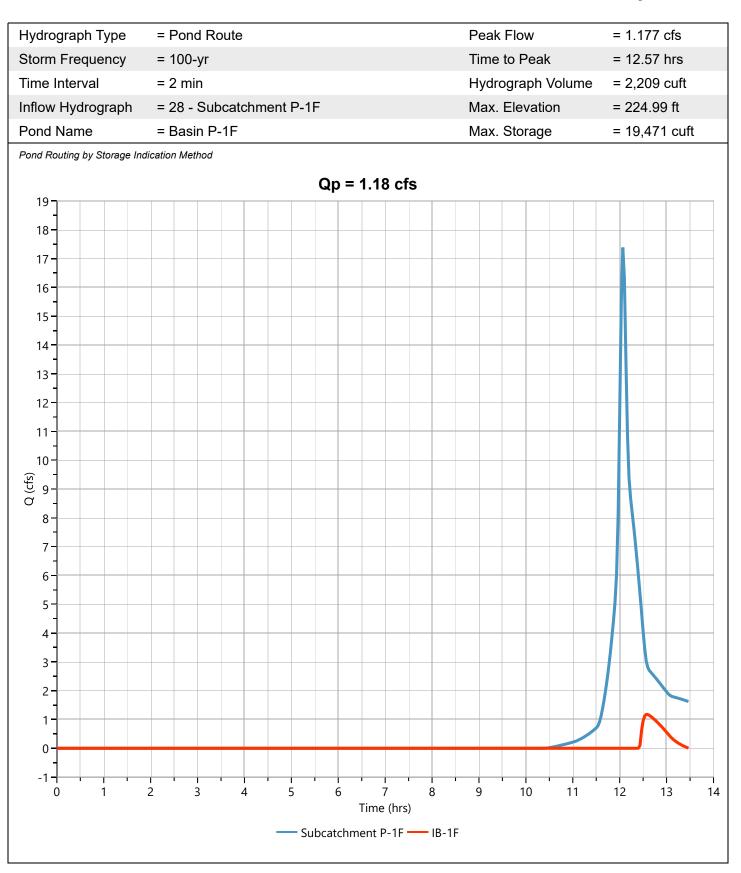
Hydrology Studio v 3.0.0.29

IB-1F


12-13-2023

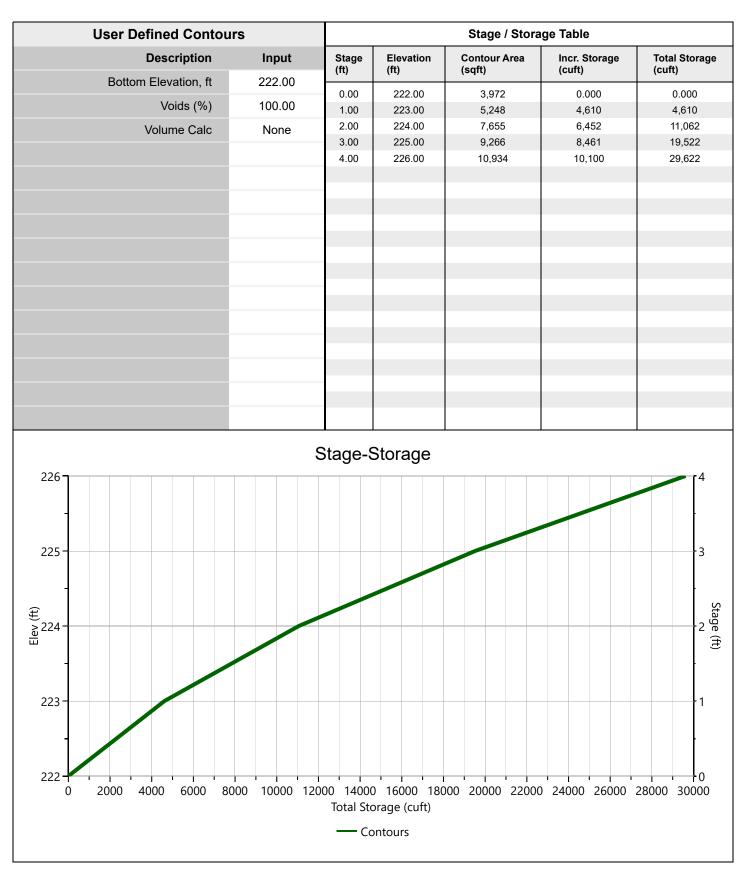
Hydrology Studio v 3.0.0.29

IB-1F


12-13-2023

Hydrology Studio v 3.0.0.29

IB-1F

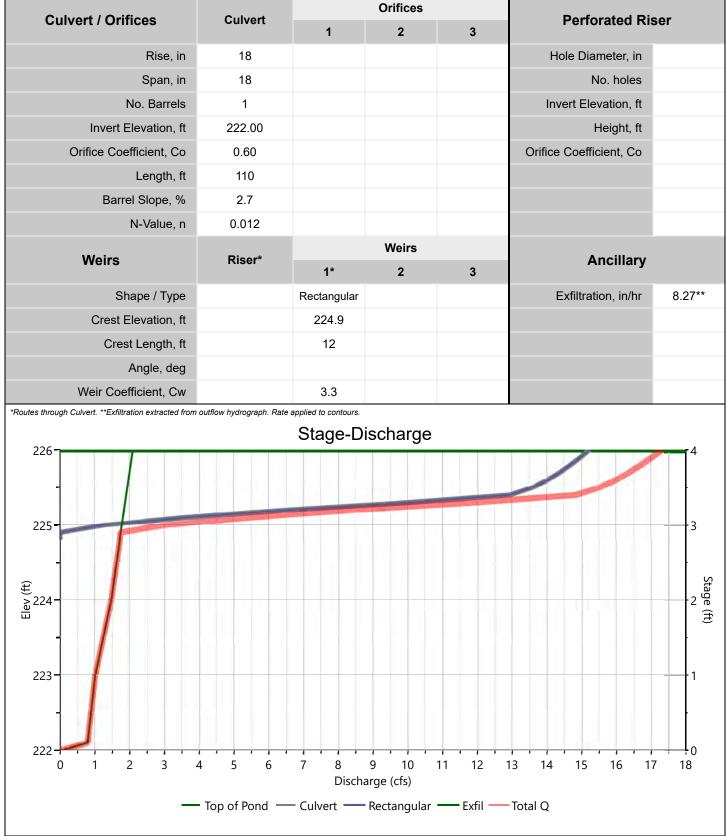

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1F

Stage-Storage

12-13-2023


Hydrology Studio v 3.0.0.29

Basin P-1F

Stage-Discharge

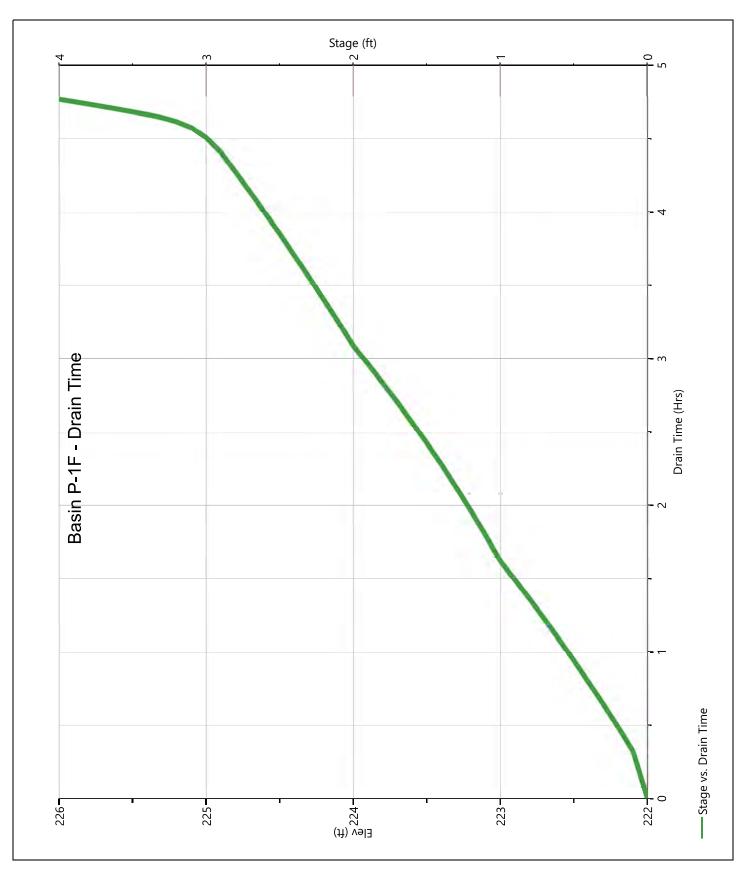
12-13-2023

Perforated Riser 3 Hole Diameter, in No. holes Invert Elevation, ft Height, ft

Hydrology Studio v 3.0.0.29

Basin P-1F

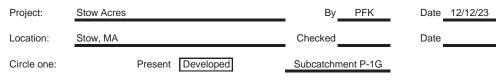
Stage-Storage-Discharge Summary


Stage	Elev. (ft)	Storage (cuft)	ge Culvert (cfs)	rt Orifices, cfs			Riser		Weirs, cfs		Pf Riser	Exfil User		Total
(ft)				1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	222.00	0.000	0.000					0.000				0.000		0.000
1.00	223.00	4,610	0.000					0.000				1.005		1.005
2.00	224.00	11,062	0.000					0.000				1.465		1.465
3.00	225.00	19,522	1.252 ic					1.252				1.774		3.026
4.00	226.00	29,622	15.23 ic					15.23 s				2.093		17.32

12-13-2023

Hydrology Studio v 3.0.0.29

Basin P-1F


Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			1.10	107.56
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			1.52	59.16
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	N source per line.			Totals =	2.61	166.73

<u>63.77</u>;

Use CN =

64

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

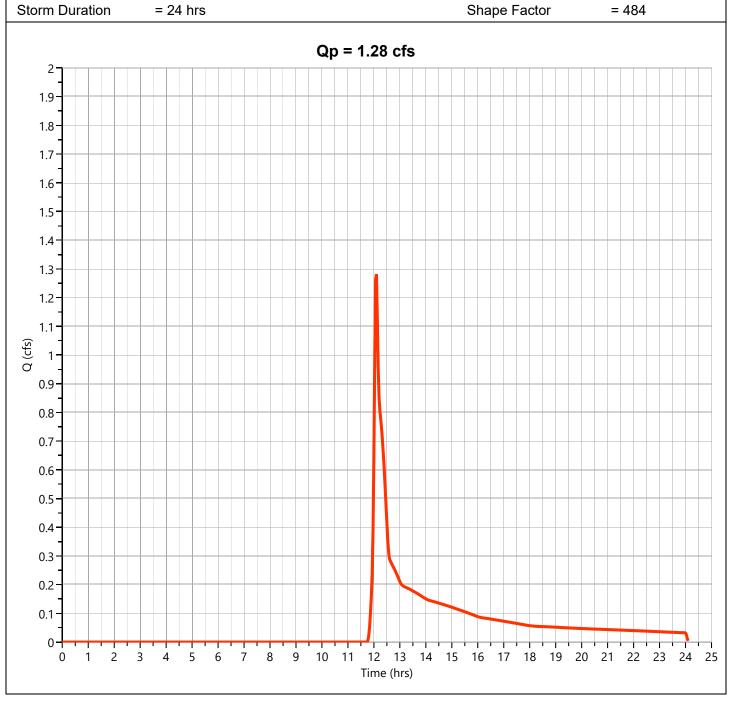
Storm #1 Storm #2 Storm #3 10 100 2 3.23 5.01 7.83

1.57

3.62

166.73 =

2.61


=

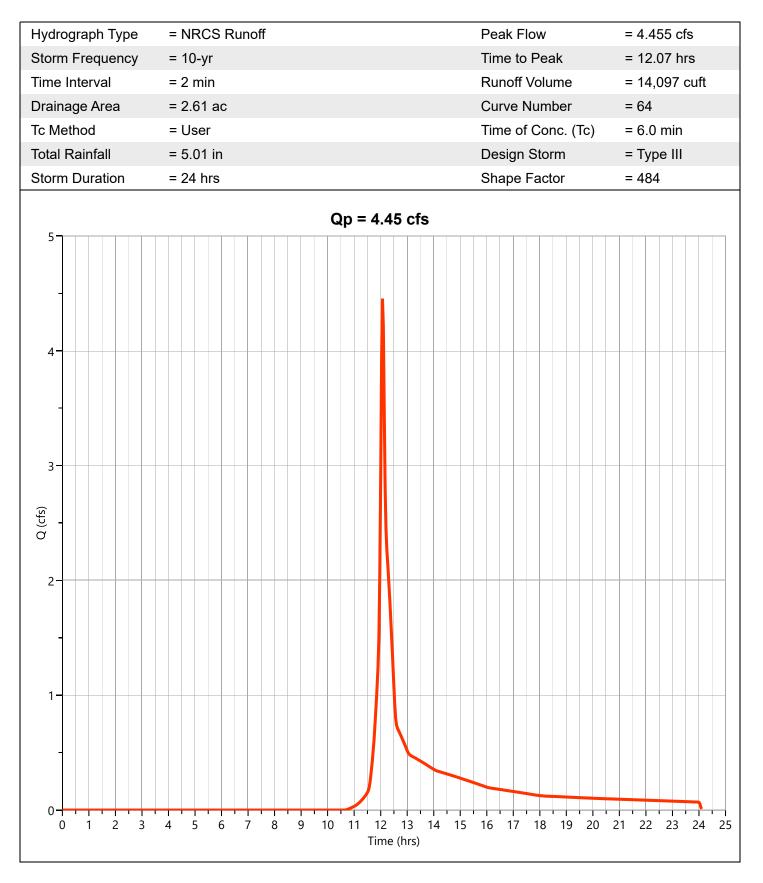
0.56

Hydrology Studio v 3.0.0.29

Subcatchment P-1G

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.282 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.10 hrs
Time Interval	= 2 min	Runoff Volume	= 5,091 cuft
Drainage Area	= 2.61 ac	Curve Number	= 64
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min
Total Rainfall	= 3.23 in	Design Storm	= Type III

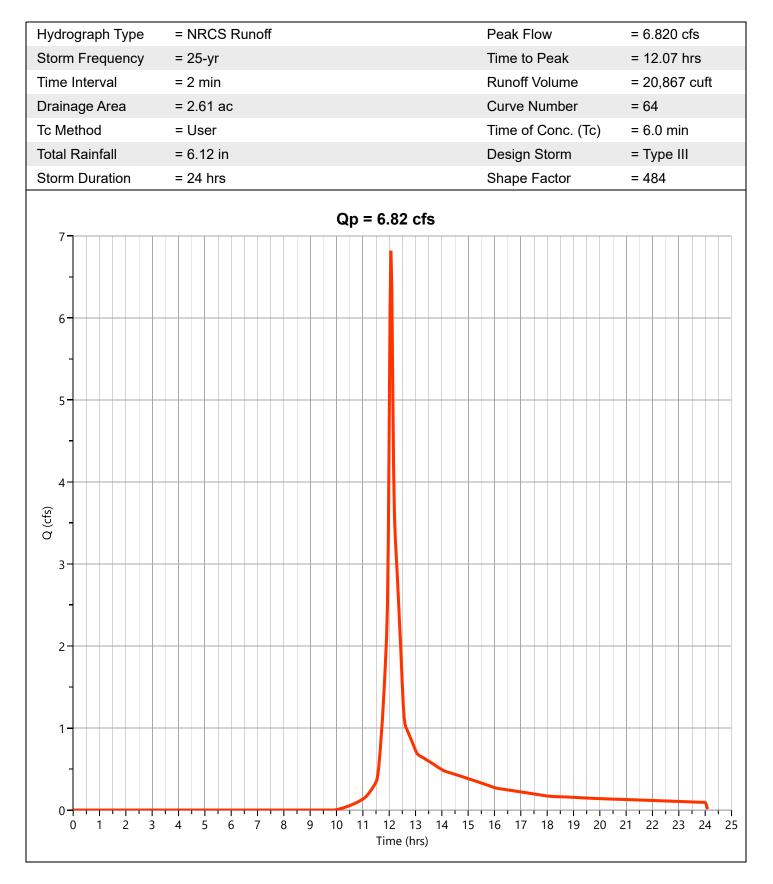
Project Name:


12-14-2023

Hydrology Studio v 3.0.0.29

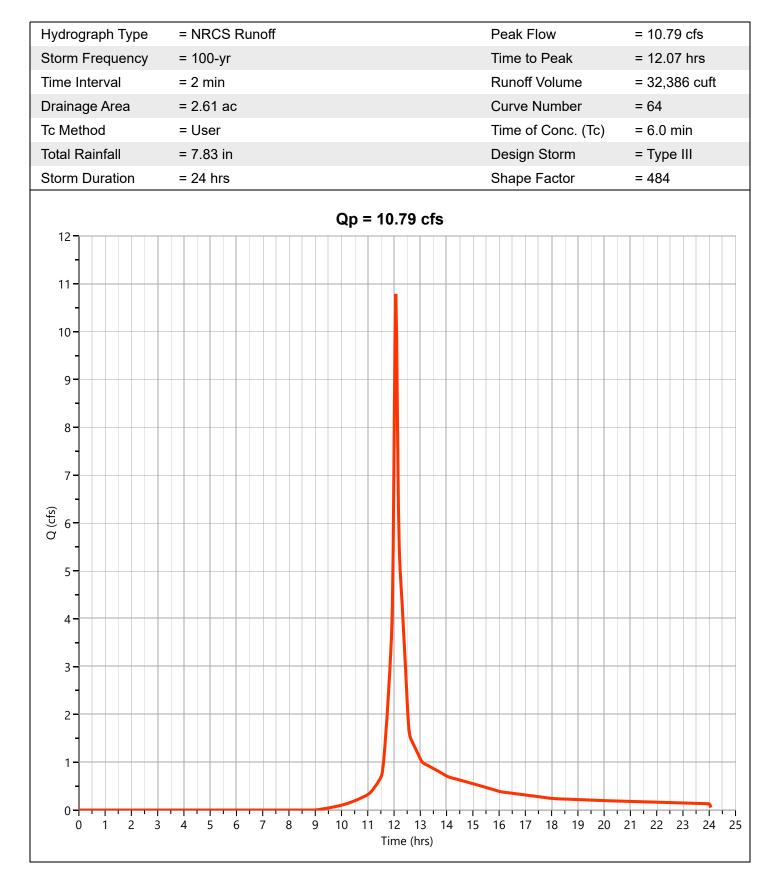
Subcatchment P-1G

12-14-2023


Project Name:

Hydrology Studio v 3.0.0.29

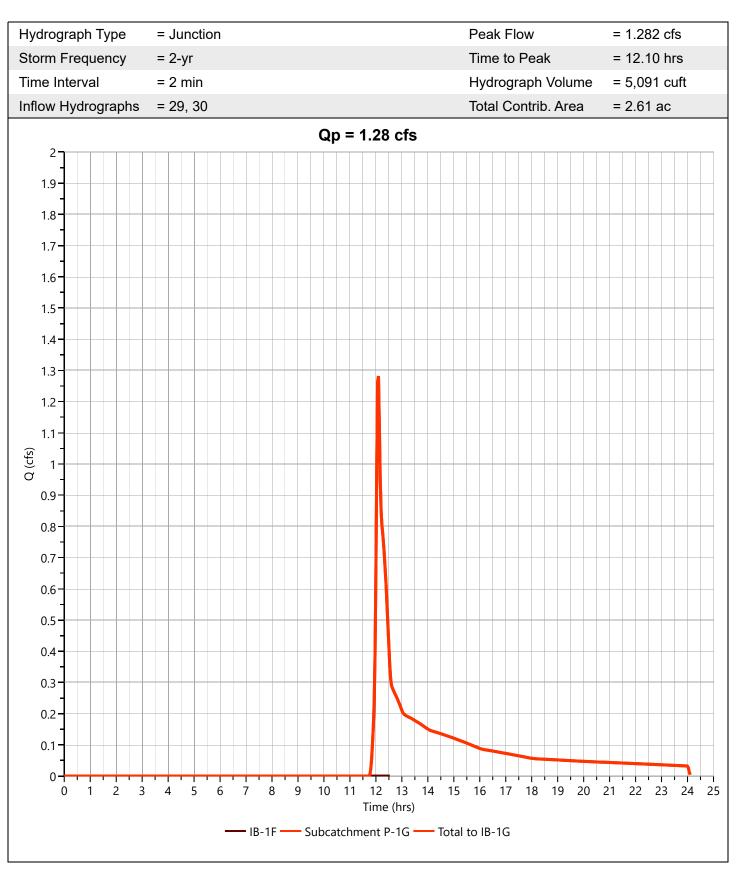
Subcatchment P-1G



12-14-2023

Hydrology Studio v 3.0.0.29

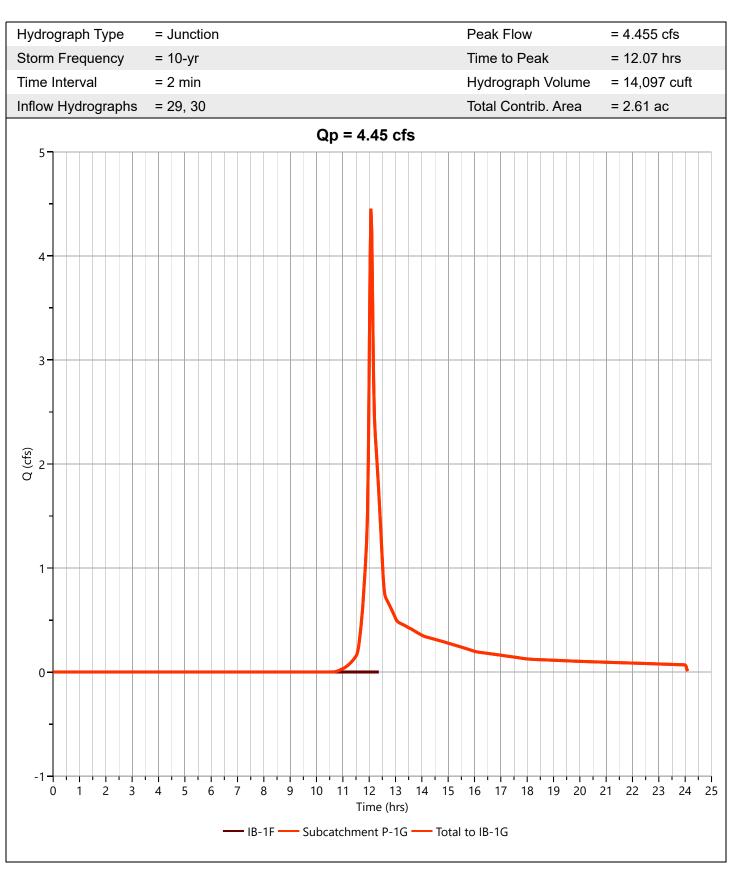
Subcatchment P-1G


12-14-2023

Hydrology Studio v 3.0.0.29

Total to IB-1G

12-14-2023

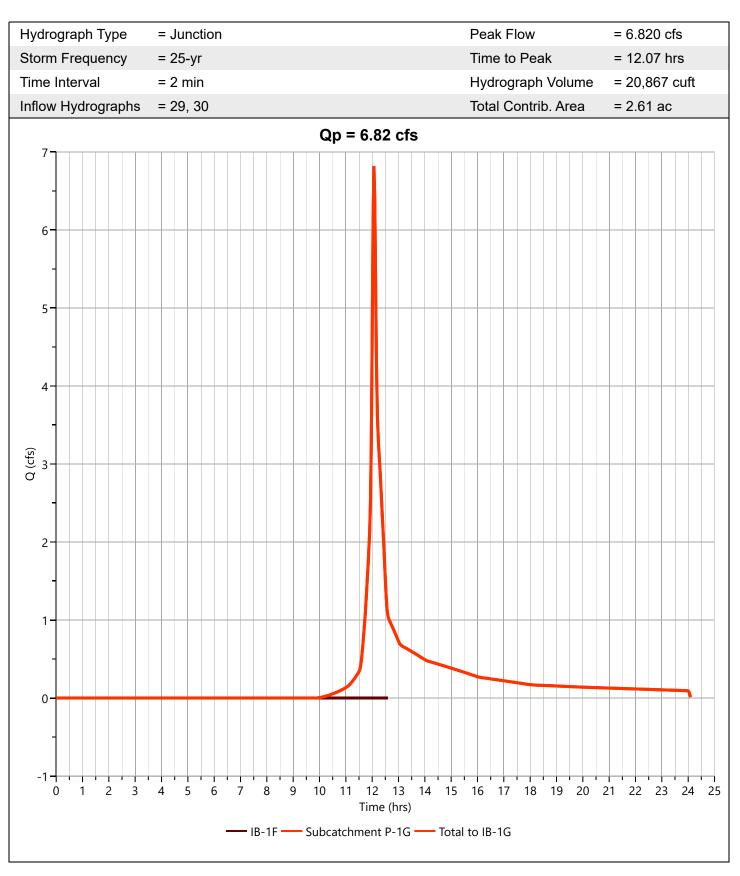


Hydrology Studio v 3.0.0.29

Total to IB-1G

Project Name:

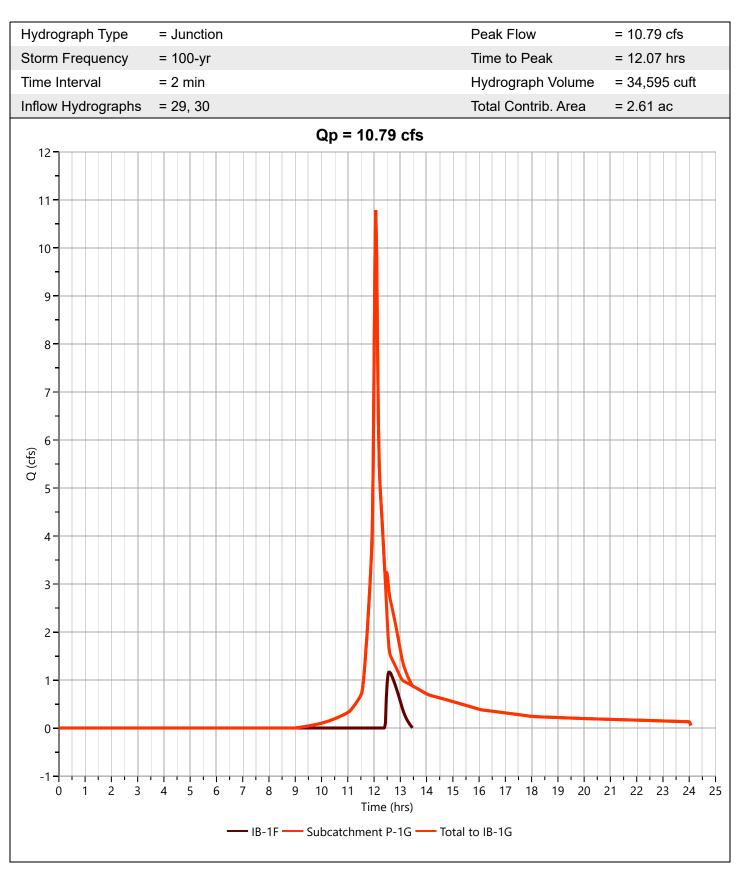
12-14-2023



Hydrology Studio v 3.0.0.29

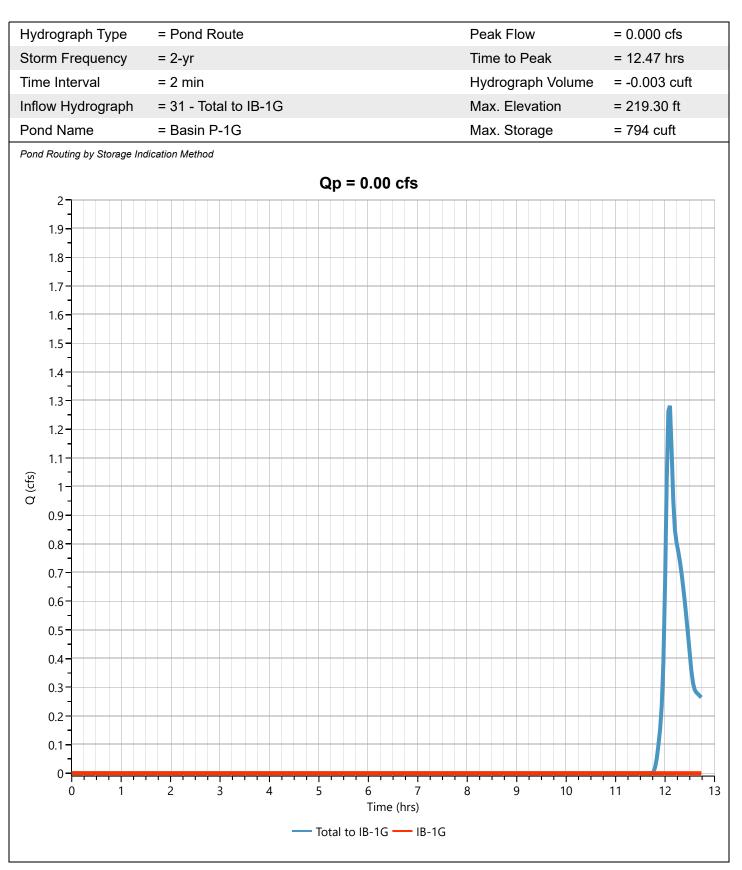
Total to IB-1G

12-14-2023


Project Name:

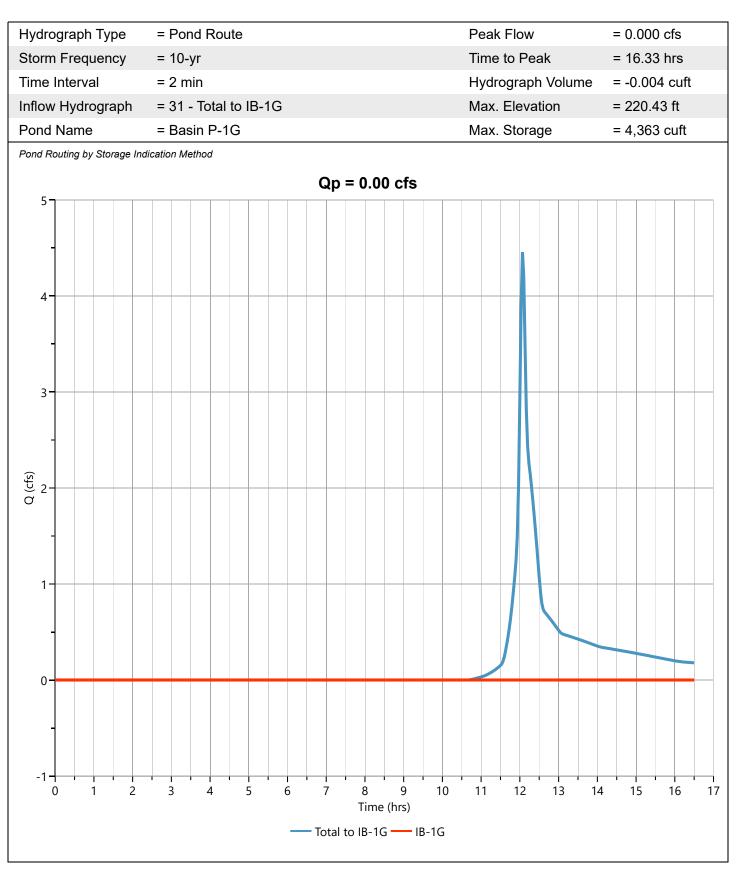
Hydrology Studio v 3.0.0.29

Total to IB-1G


Project Name: 12-14-2023

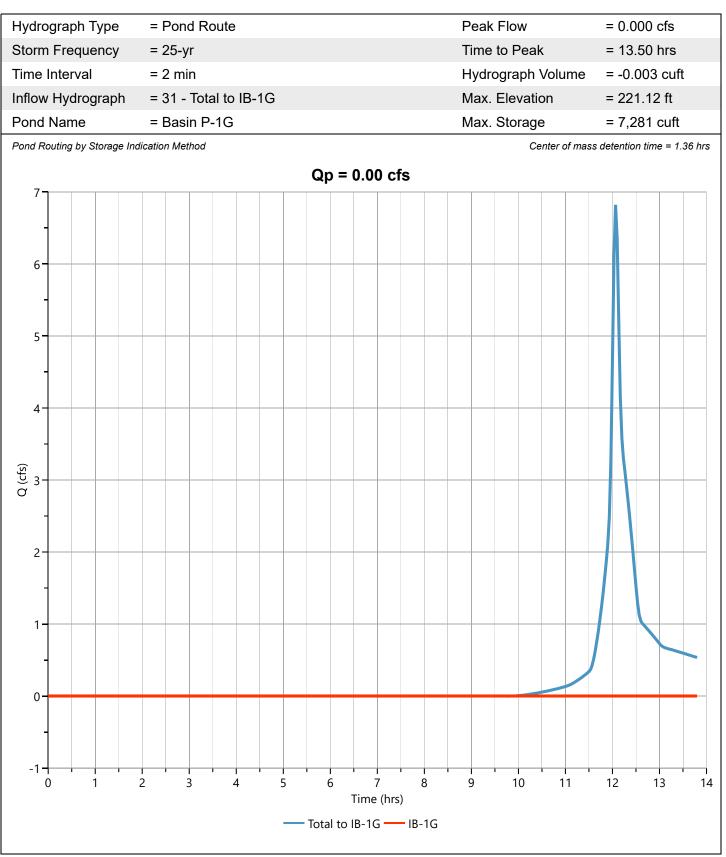
Hydrology Studio v 3.0.0.29

IB-1G


12-14-2023

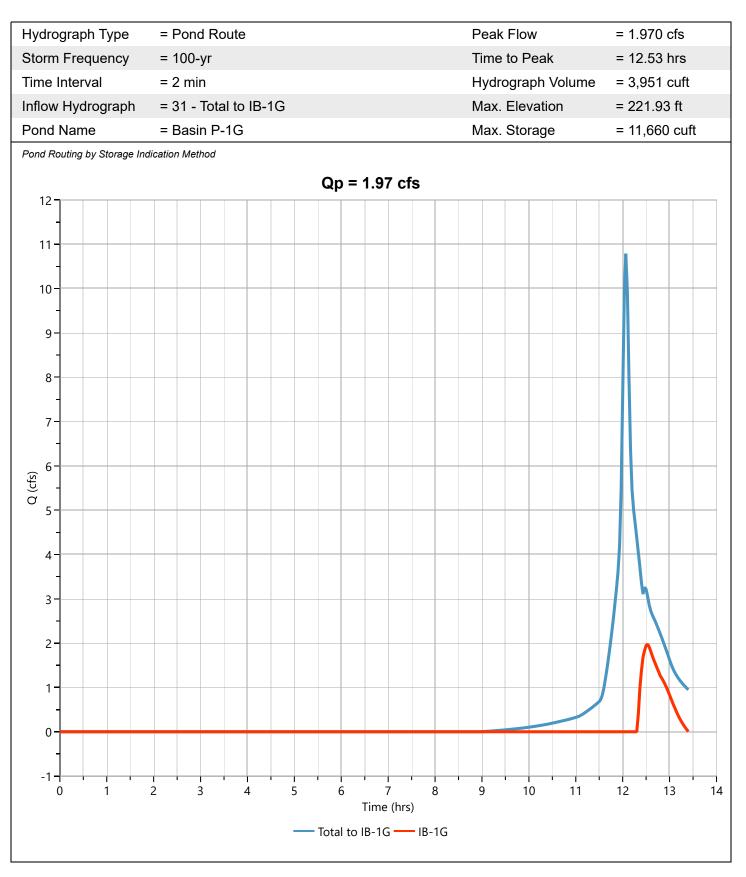
Hydrology Studio v 3.0.0.29

IB-1G


12-14-2023

Hydrology Studio v 3.0.0.29

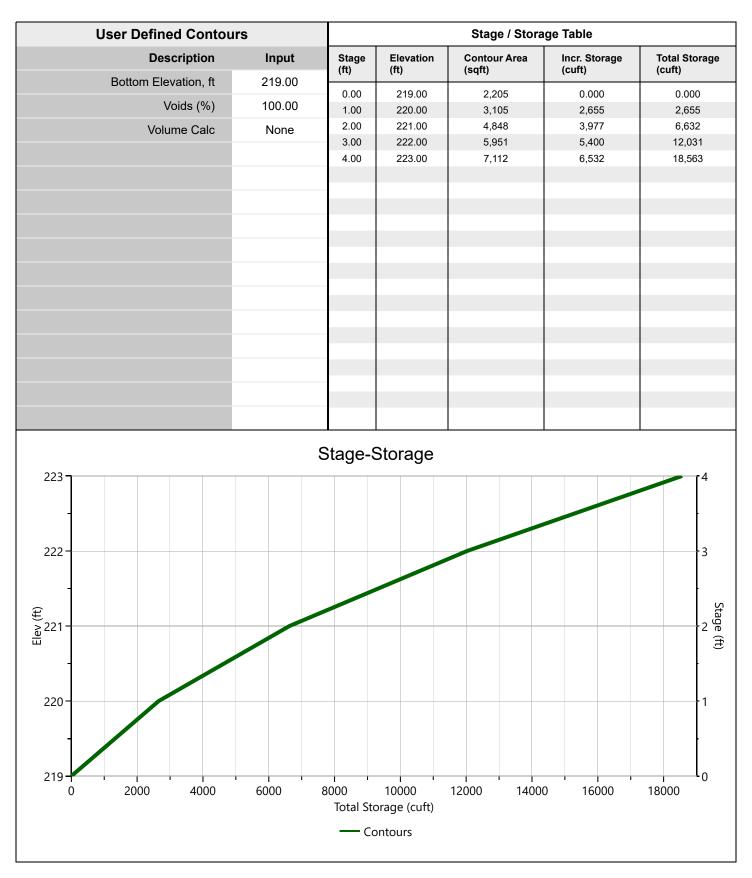
IB-1G


12-14-2023

Hydrology Studio v 3.0.0.29

IB-1G

12-14-2023


Hydrology Studio v 3.0.0.29

Basin P-1G

Project Name:

12-14-2023

Stage-Storage

Culvert / Orifices

Weirs

Rise, in

Span, in

No. Barrels

Length, ft

N-Value, n

Shape / Type

Crest Elevation, ft

Weir Coefficient, Cw

Crest Length, ft

Angle, deg

Invert Elevation, ft

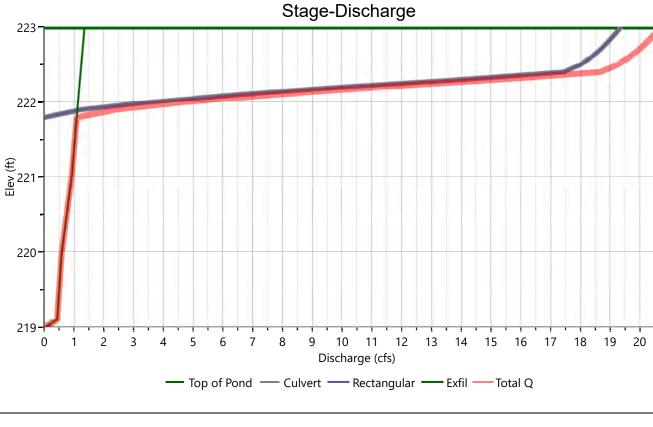
Barrel Slope, %

Orifice Coefficient, Co

Hydrology Studio v 3.0.0.29

Basin P-1G

1


21

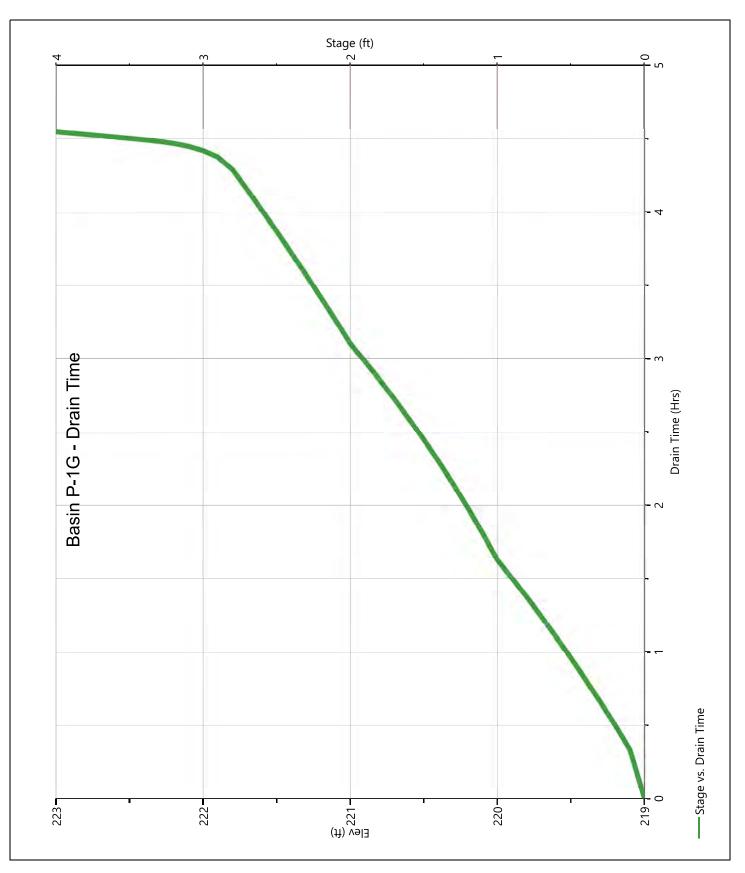
Stage-Discharge

12-14-2023

Orifices Culvert **Perforated Riser** 2 1 3 Hole Diameter, in 18 18 No. holes 1 Invert Elevation, ft 217.00 Height, ft 0.60 Orifice Coefficient, Co 50 2 0.012 Weirs **Riser*** Ancillary 2 1* 3 Exfiltration, in/hr Rectangular 8.27** 221.8 12 3.3 Stage-Discharge 3 Stage (ft) 2

Hydrology Studio v 3.0.0.29

Basin P-1G


Stage-Storage-Discharge Summary

12-14-2023

Hydrology Studio v 3.0.0.29

Basin P-1G


Pond Drawdown

12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.84	82.49
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			1.38	53.82
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	source per line.			Totals =	2.22	136.31

CN (weighted) = total product total area

61.35 ;

Use CN =

61

2. Runoff

 Storm #1
 Storm #2
 Storm #3

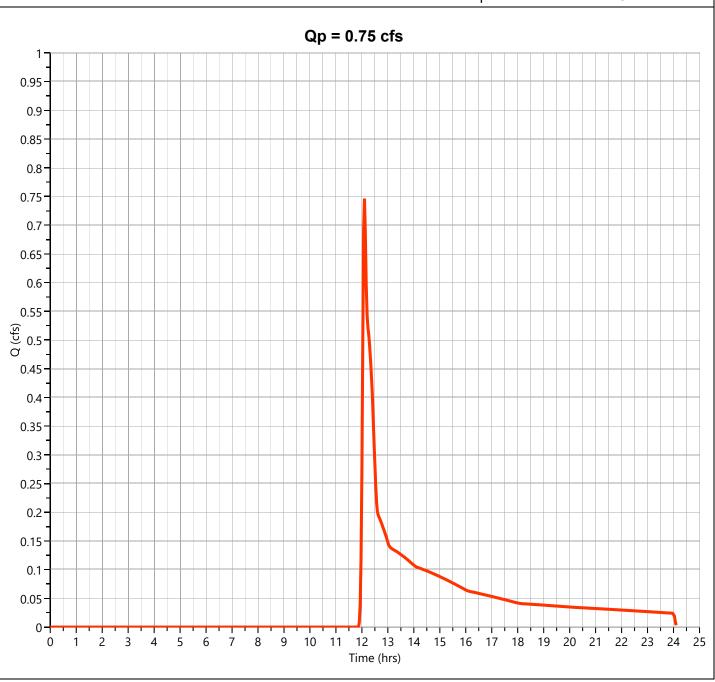
 yr
 2
 10
 100

 in
 3.23
 5.01
 7.83

 in
 0.47
 1.40
 3.35

=

136.31

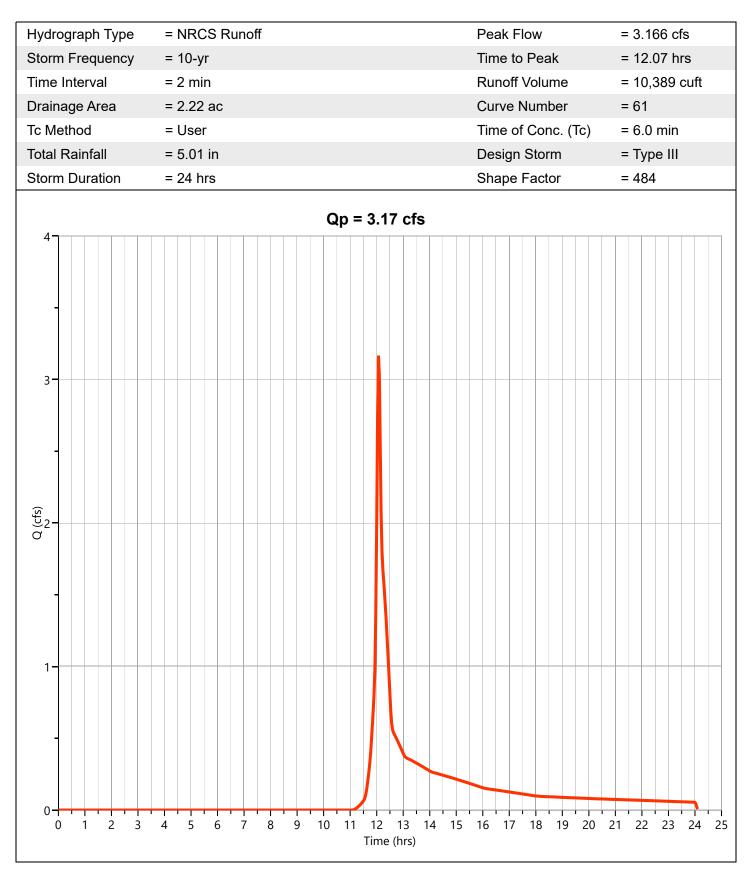

2.22

=

Hydrology Studio v 3.0.0.29

Subcatchment P-1H

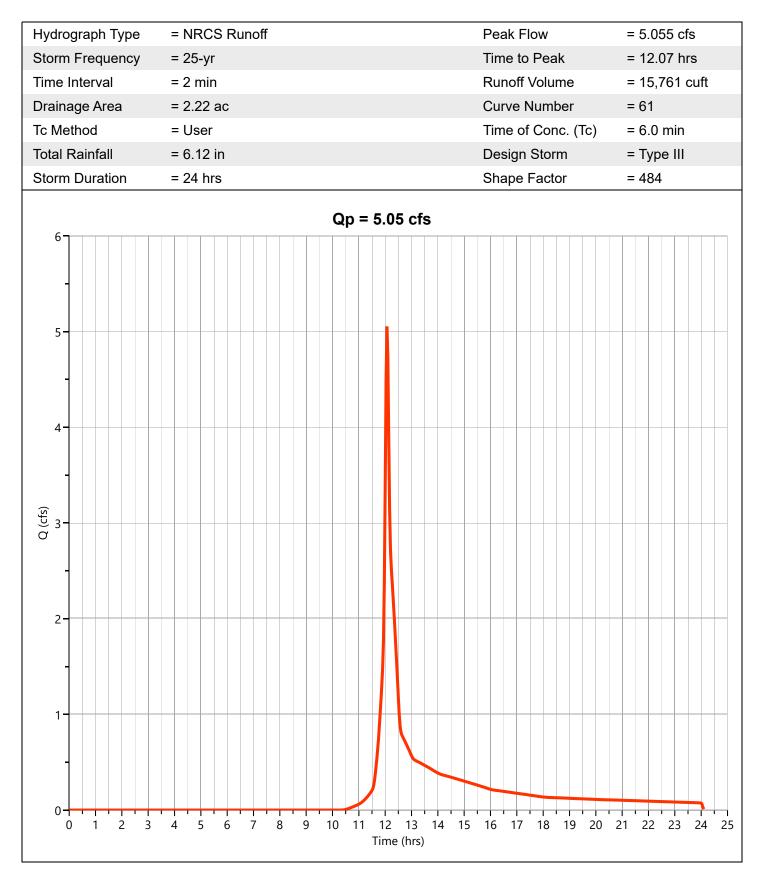
Hydrograph Type Peak Flow = NRCS Runoff = 0.746 cfs = 12.10 hrs Storm Frequency Time to Peak = 2-yr Time Interval = 2 min **Runoff Volume** = 3,447 cuft Drainage Area = 2.22 ac **Curve Number** = 61 Tc Method = User Time of Conc. (Tc) = 6.0 min **Total Rainfall** = 3.23 in **Design Storm** = Type III Storm Duration = 24 hrs Shape Factor = 484



12-13-2023

Hydrology Studio v 3.0.0.29

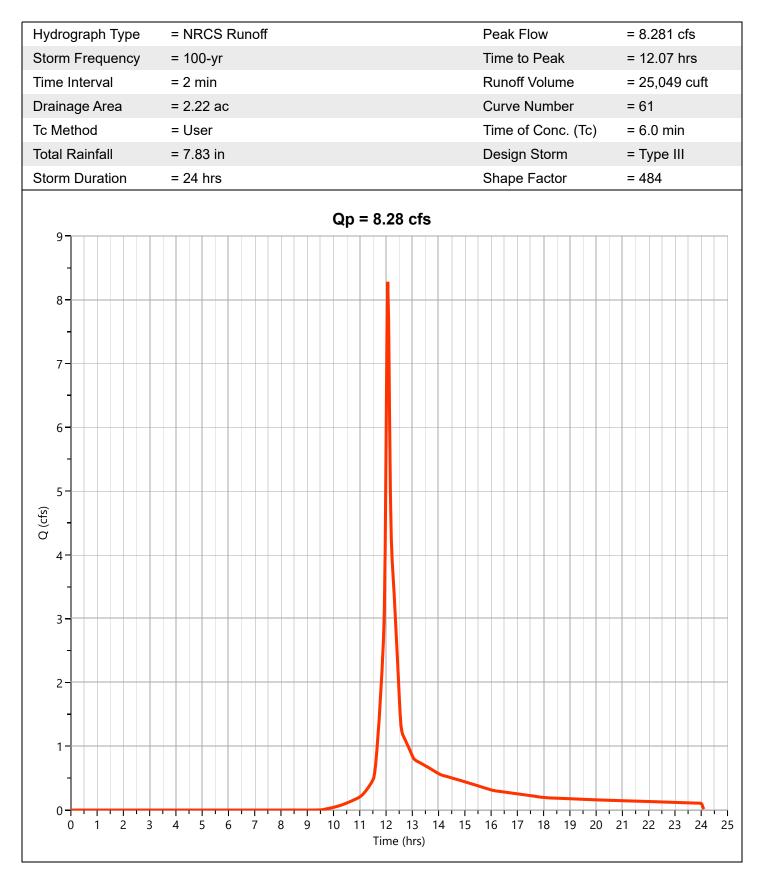
Subcatchment P-1H


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1H

12-13-2023

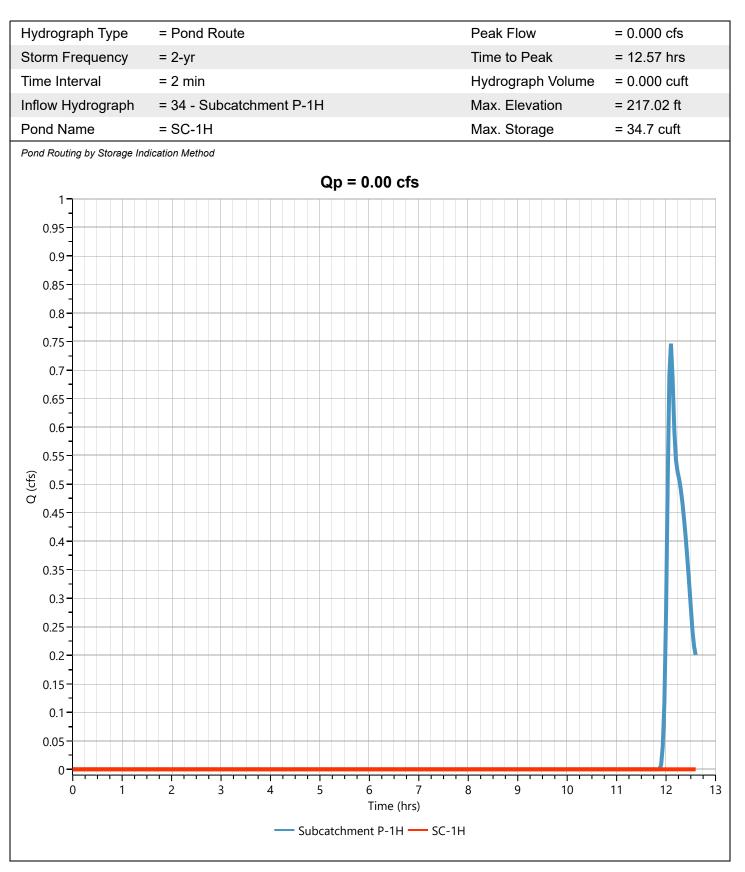


Hydrology Studio v 3.0.0.29

Subcatchment P-1H

12-13-2023

Project Name:

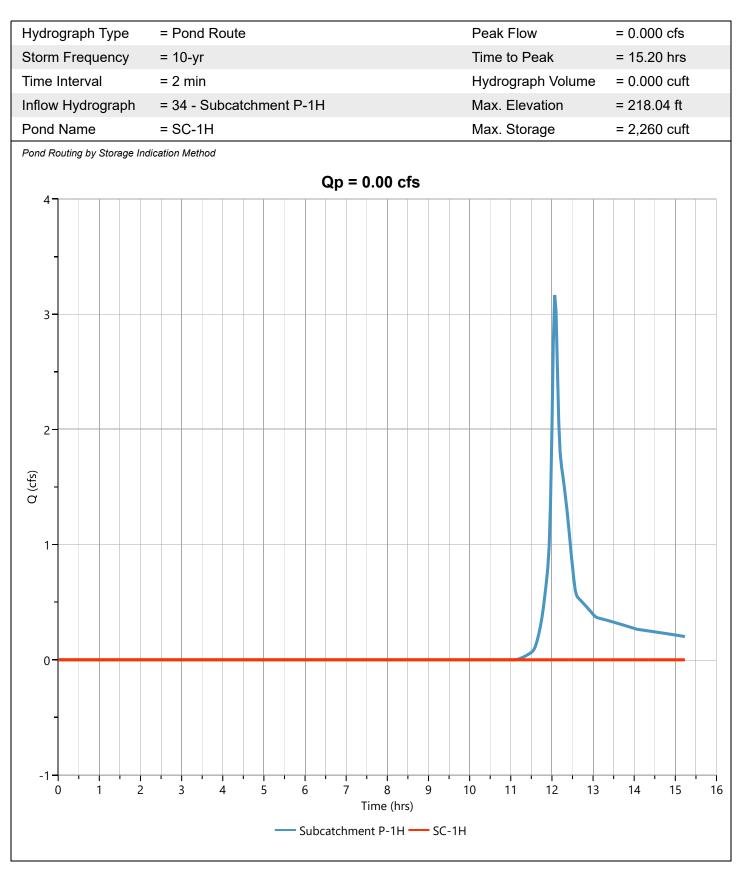


Hydrology Studio v 3.0.0.29

SC-1H

12-13-2023

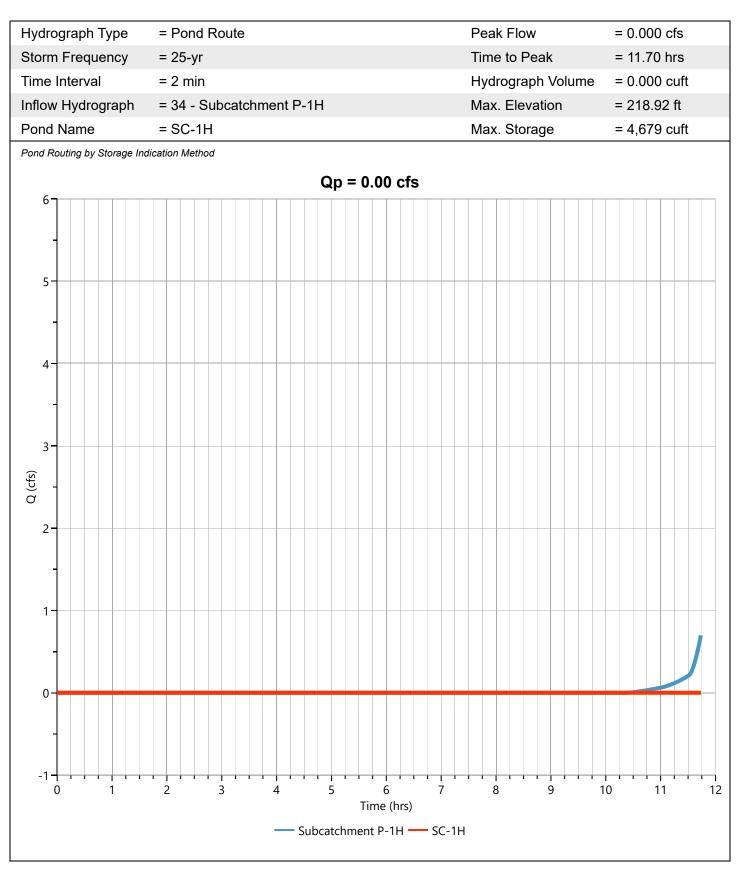
Project Name:



Hydrology Studio v 3.0.0.29

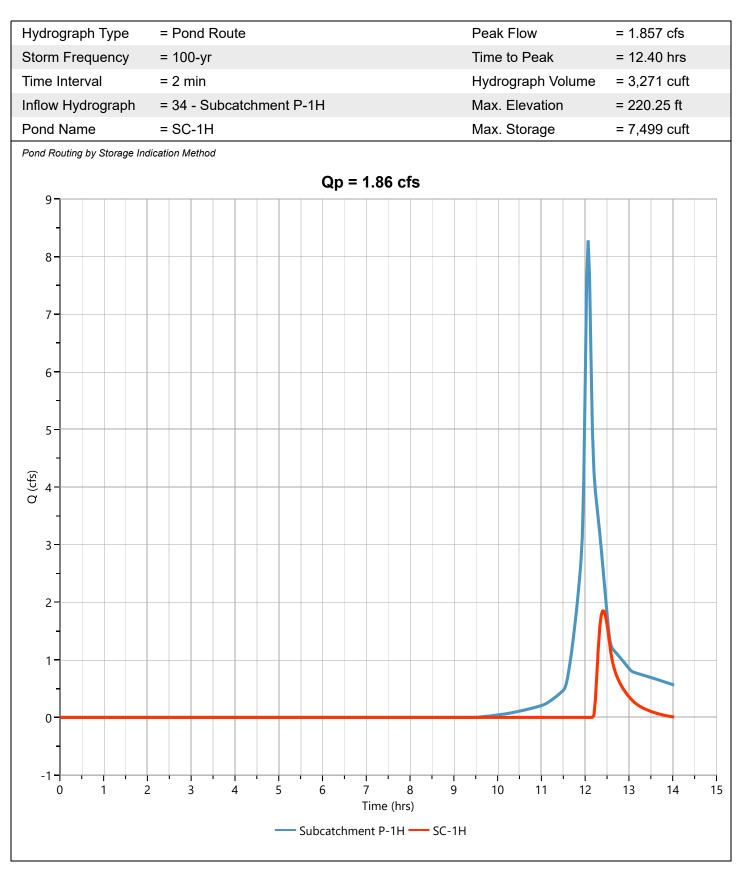
SC-1H

Project Name:


12-13-2023

Hydrology Studio v 3.0.0.29

SC-1H


Project Name: 12-13-2023

Hydrology Studio v 3.0.0.29

SC-1H

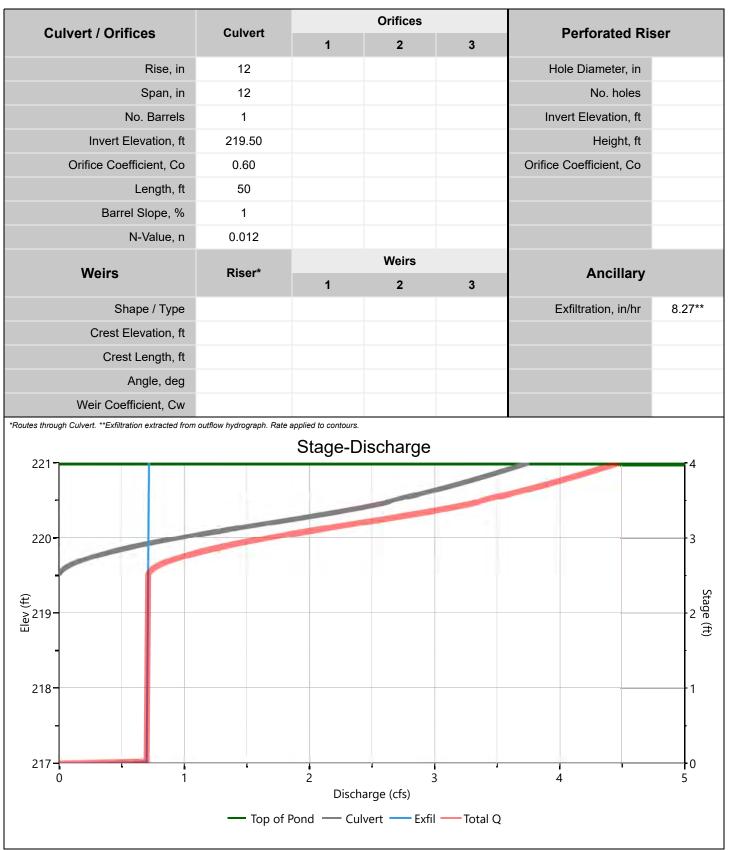
12-13-2023

Hydrology Studio v 3.0.0.29

SC-1H

12-13-2023

Stage-Storage


	amber	Stage / Storage Table					
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)	
Chamber Height, in	30	0.0	217.00	3,652	0.000	0.000	
Chamber Shape	Arch	2.4	217.00	3,652	292	292	
Chamber Width, in	51	4.8	217.40	3,652	292	584	
		7.2	217.60	3,652	430	1,014	
Installed Length, ft	7.12	9.6	217.80	3,652	571	1,585	
No. Chambers	100	12.0	218.00	3,652	569	2,154	
Dava Chambar Stan auft	4 500	14.4	218.20	3,652	564	2,718	
Bare Chamber Stor, cuft	4,590	16.8	218.40	3,652	558	3,276	
No. Rows	10	19.2	218.60	3,652	549	3,825	
Space Between Rows, in	6	21.6	218.80	3,652	538	4,363	
		24.0	219.00 219.20	3,652	524	4,887	
Stone Above, in	12	26.4 28.8	219.20	3,652 3,652	507 486	5,394 5,881	
Stone Below, in	6	31.2	219.40	3,652	460	6,341	
Stone Sides, in	12	33.6	219.80	3,652	400	6,765	
•		36.0	220.00	3,652	371	7,137	
Stone Ends, in	12	38.4	220.20	3,652	292	7,429	
Encasement Voids, %	40.00	40.8	220.40	3,652	292	7,721	
		43.2	220.60	3,652	292	8,013	
Encasement Bottom Elevation, ft	217.00	45.6	220.80	3,652	292	8,305	
		48.0	221.00	3,652	292	8,597	
221							
220						3	
220-							
220-							
220-							
220-							
220							
220-							
220							
220						2 °	
220	3000	4000	5000 prage (cuft)	6000	7000		

Hydrology Studio v 3.0.0.29

SC-1H

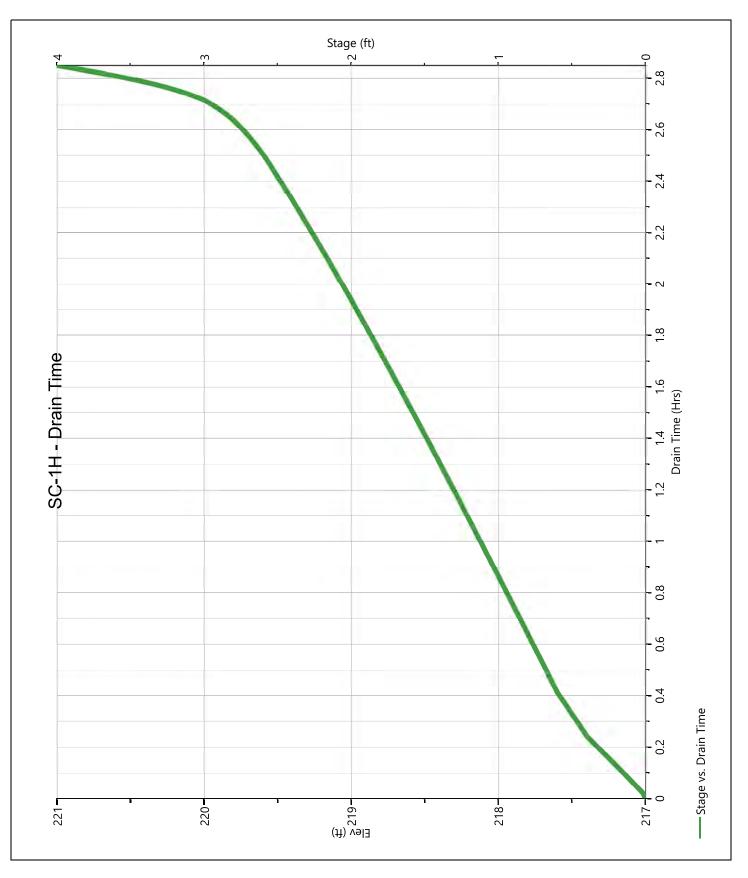
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

SC-1H

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	S	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	217.00	0.000	0.000									0.000		0.000
0.20	217.20	292	0.000									0.700		0.700
0.40	217.40	584	0.000									0.701		0.701
0.60	217.60	1,014	0.000									0.702		0.702
0.80	217.80	1,585	0.000									0.703		0.703
1.00	218.00	2,154	0.000									0.704		0.704
1.20	218.20	2,718	0.000									0.705		0.705
1.40	218.40	3,276	0.000									0.706		0.706
1.60	218.60	3,825	0.000									0.707		0.707
1.80	218.80	4,363	0.000									0.708		0.708
2.00	219.00	4,887	0.000									0.709		0.709
2.20	219.20	5,394	0.000									0.710		0.710
2.40	219.40	5,881	0.000									0.711		0.711
2.60	219.60	6,341	0.044 ic									0.712		0.756
2.80	219.80	6,765	0.371 ic									0.713		1.084
3.00	220.00	7,137	0.945 ic									0.714		1.660
3.20	220.20	7,429	1.673 ic									0.715		2.388
3.40	220.40	7,721	2.405 ic									0.716		3.122
3.60	220.60	8,013	2.907 oc									0.717		3.624
3.80	220.80	8,305	3.357 oc									0.718		4.075
4.00	221.00	8,597	3.753 oc									0.719		4.472

12-13-2023

Hydrology Studio v 3.0.0.29

SC-1H

Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.43	41.74
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.17	6.53
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN se	ource per line.			Totals =	0.59	48.27
CN (weighte	ed) = total product = 48.27 =	81.34	; Use	CN =	81]

CN (weighted) = total product total area

2. Runoff

Frequency..... yr Rainfall, P (24-hour)..... in Runoff, Q..... in (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)

Storm #1 Storm #2 Storm #3 100 2 10 3.23 5.01 7.83 1.52 3.03 5.62

0.59

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed SUBCATCHMENT P-11 Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) LAWN 2. Mannings roughness coeff., n (table 3-1) 0.24 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.050 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.10 0.10 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 176 9. Watercourse slope, s ft/ft 0.05 10. Average Velocity, V (figure 3-1) ft/s 3.61 11. Tt = L / 3600V Compute Tt hr 0.01 0.01 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s

ft

Compute Tt hr

hr min

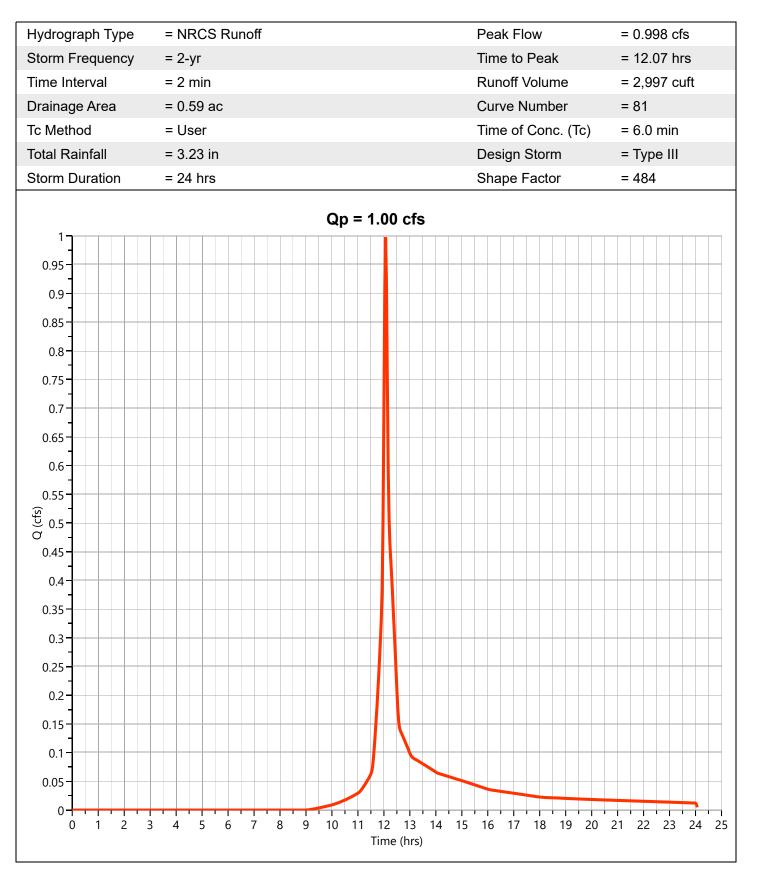
(210-VI-TR-55, Second Ed., June 1986)

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

18. Flow length, L

19. Tt = L / 3600V

D-3

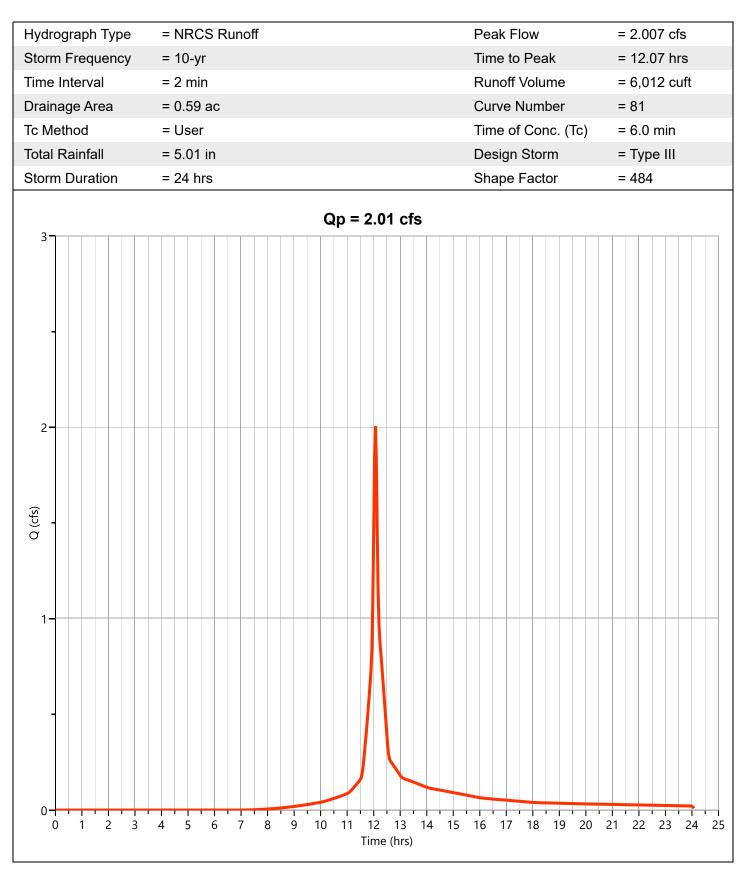

0

0.11 6.6

Hydrology Studio v 3.0.0.29

Subcatchment P-1I

12-13-2023

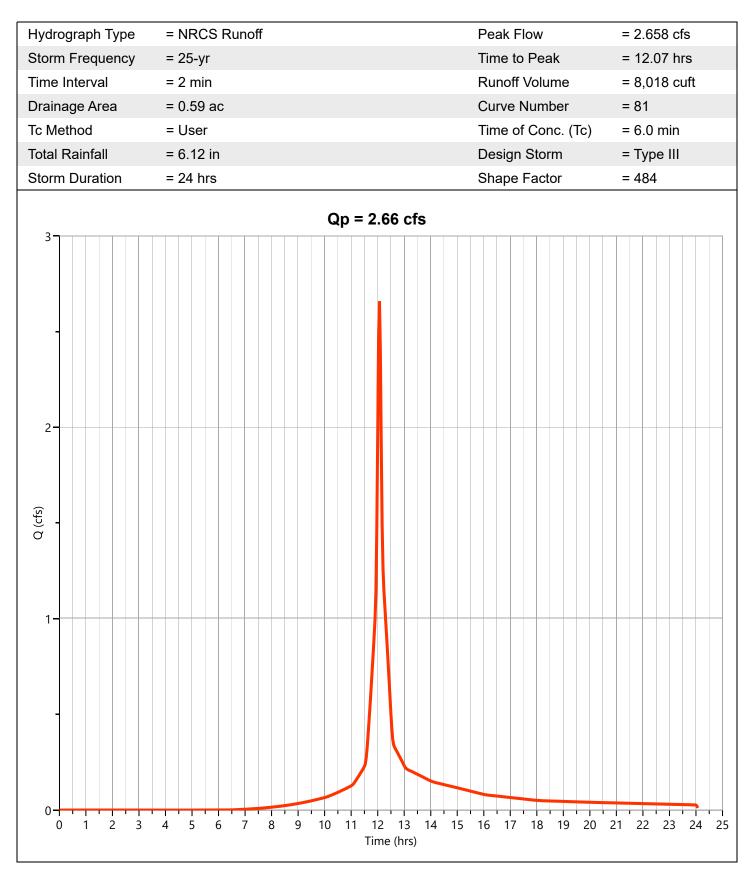


Hydrology Studio v 3.0.0.29

Subcatchment P-1I

12-13-2023

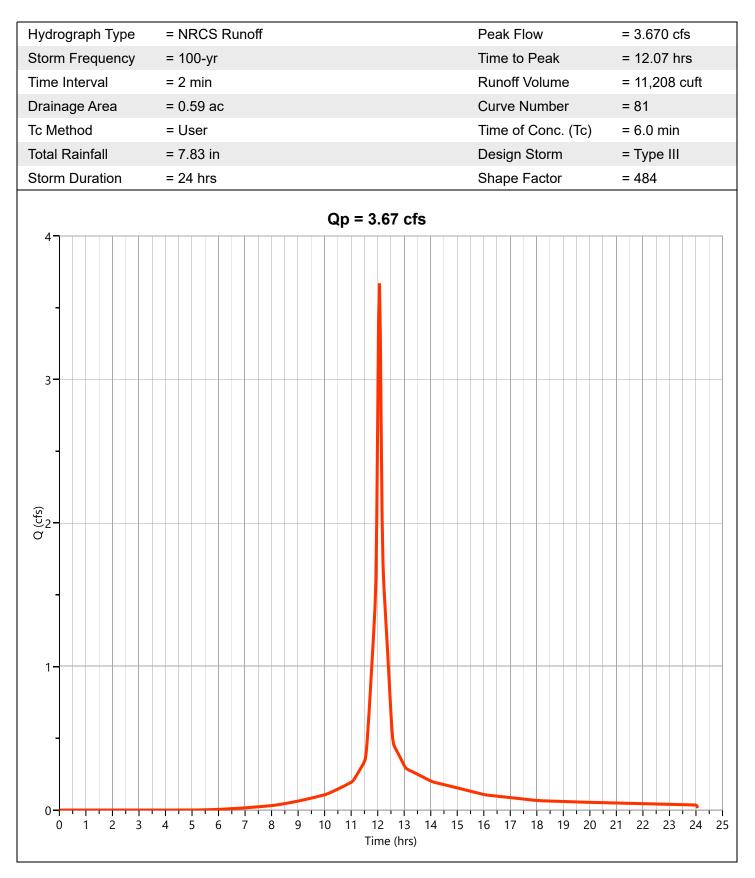
Hyd. No. 36



Project Name:

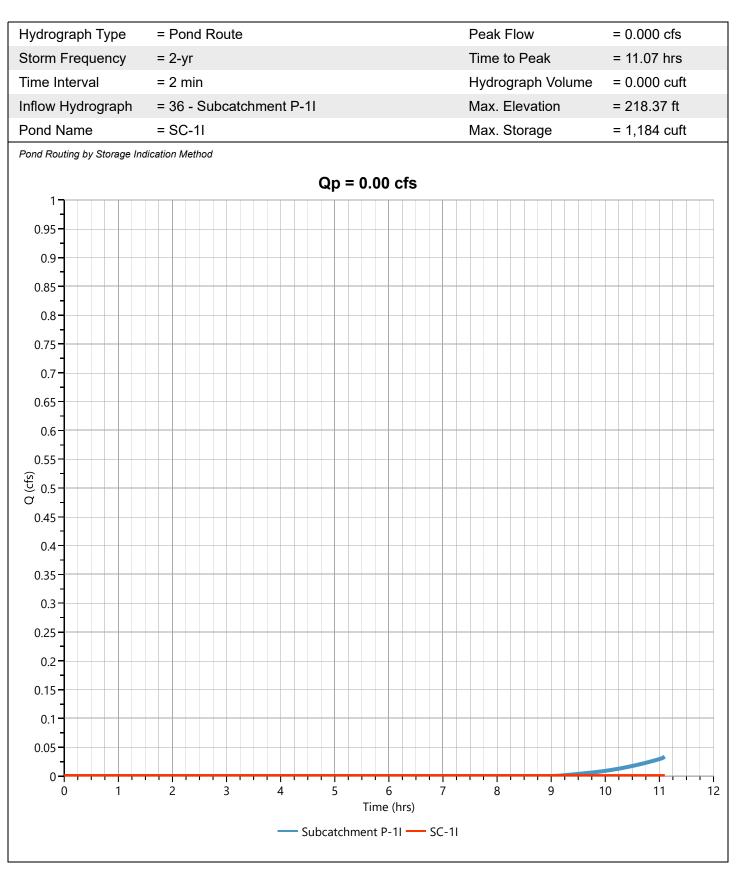
Hydrology Studio v 3.0.0.29

Subcatchment P-1I


12-13-2023

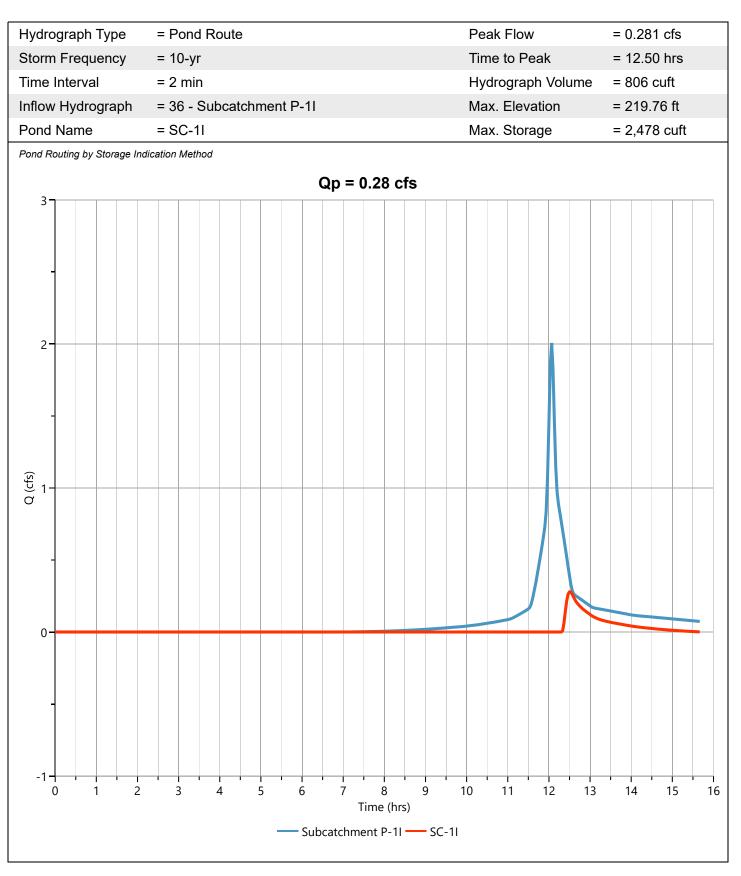
Hydrology Studio v 3.0.0.29

Subcatchment P-1I


12-13-2023

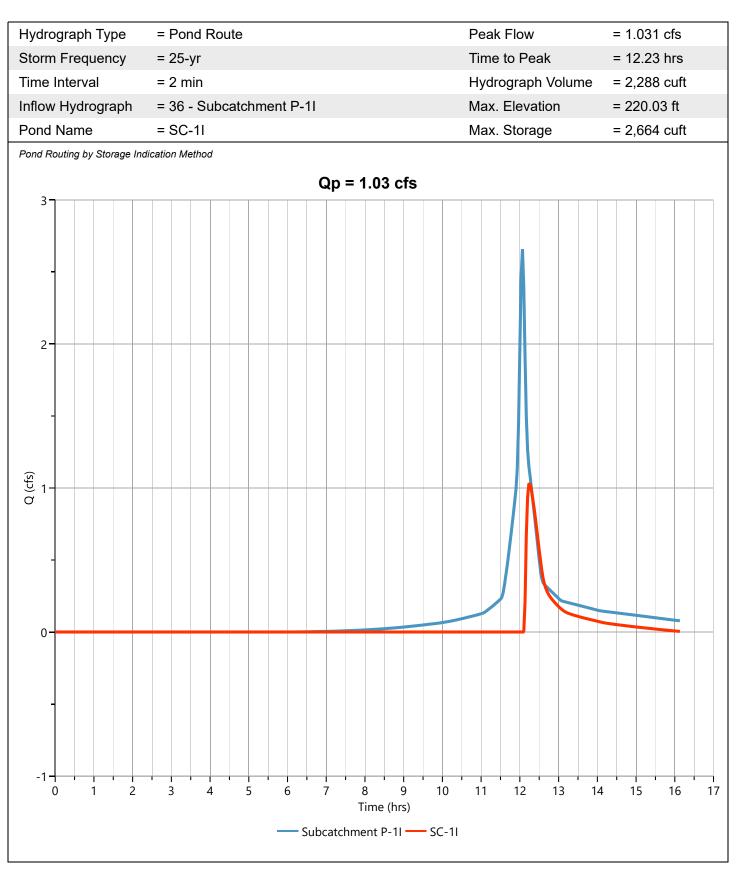
Hydrology Studio v 3.0.0.29

SC-1I


12-13-2023

Hydrology Studio v 3.0.0.29

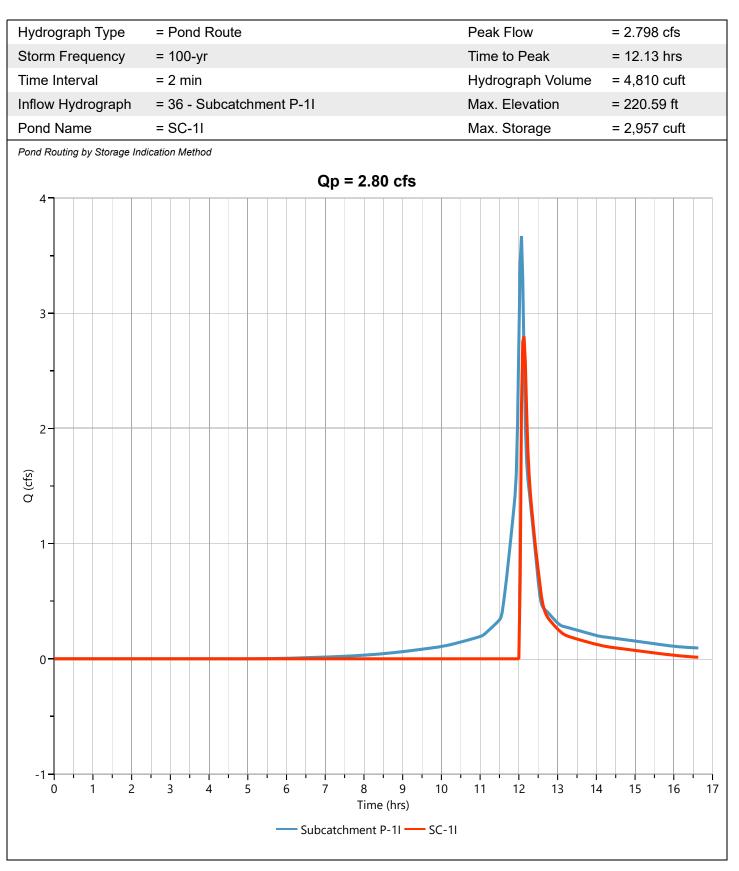
SC-1I


12-13-2023

Hydrology Studio v 3.0.0.29

SC-1I

12-13-2023



Hydrology Studio v 3.0.0.29

SC-1I

Project Name:

12-13-2023

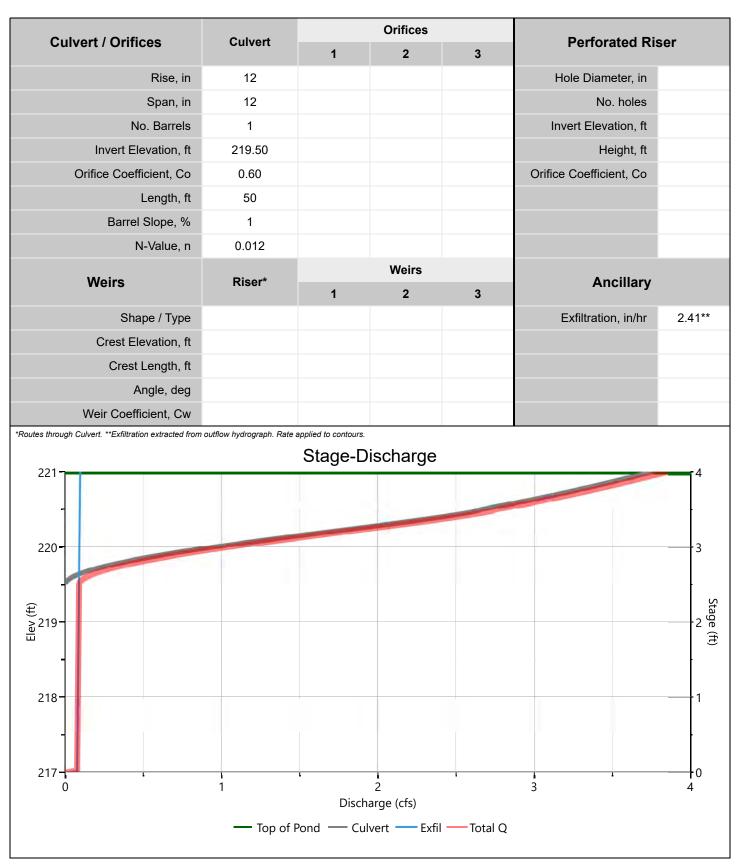
Hydrology Studio v 3.0.0.29

SC-1I

12-13-2023

Stage-Storage

StormTech® SC-740™ Ch	amber	Stage / Storage Table						
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)		
Chamber Height, in	30							
Chamber Shape	Arch	0.0 2.4	217.00 217.20	1,382 1,382	0.000	0.000		
Chamber Width, in	51	4.8	217.20	1,382	111	221		
		7.2	217.60	1,382	160	381		
Installed Length, ft	7.12	9.6	217.80	1,382	211	592		
No. Chambers	36	12.0	218.00	1,382	210	802		
Bare Chamber Stor, cuft	1,652	14.4	218.20	1,382	208	1,011		
	•	16.8	218.40	1,382	206	1,217		
No. Rows	4	19.2 21.6	218.60 218.80	1,382 1,382	203 199	1,420		
Space Between Rows, in	6	21.6	218.80	1,382	199	1,619 1,813		
-	12	24.0	219.00	1,382	188	2,001		
Stone Above, in		28.8	219.40	1,382	180	2,182		
Stone Below, in	6	31.2	219.60	1,382	171	2,352		
Stone Sides, in	12	33.6	219.80	1,382	158	2,511		
		36.0	220.00	1,382	139	2,650		
Stone Ends, in	12	38.4	220.20	1,382	111	2,760		
Encasement Voids, %	40.00	40.8	220.40	1,382	111	2,871		
ncasement Bottom Elevation, ft	217.00	43.2	220.60	1,382	111	2,981		
,		45.6 48.0	220.80 221.00	1,382 1,382	111 111	3,092 3,203		
21								
20-					\checkmark	3		
						2		
						2		
18						1		


----- UG Chambers ----- Top of Pond ----- Top of Chamber ----- Invert of Chamber ----- Top Stone ----- Bottom Stone

Hydrology Studio v 3.0.0.29

SC-1I

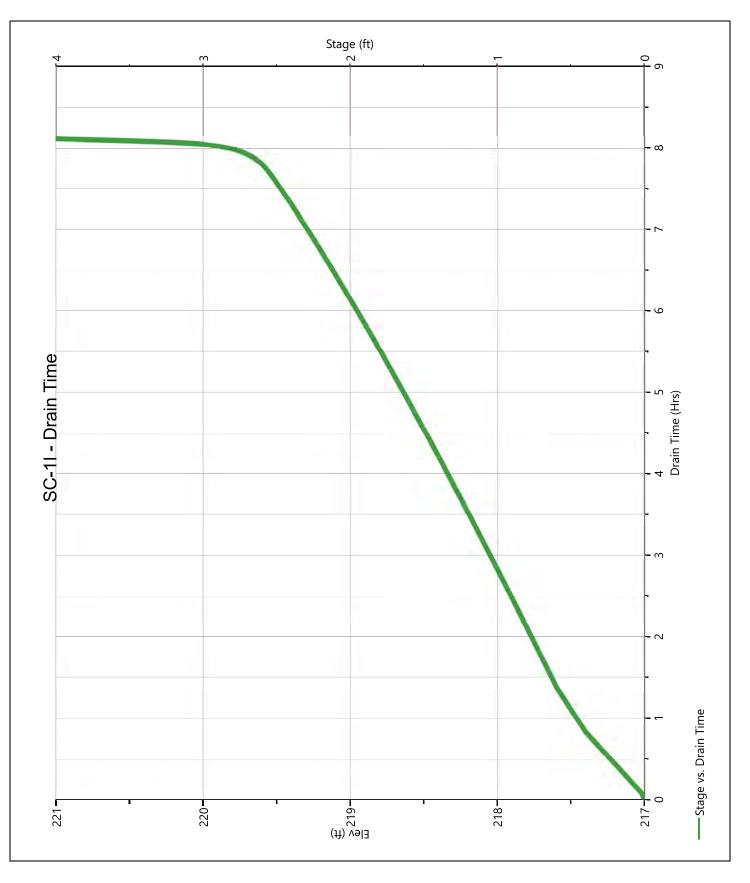
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

SC-1I

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	c	Drifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	217.00	0.000	0.000									0.000		0.000
0.20	217.20	111	0.000									0.078		0.078
0.40	217.40	221	0.000									0.079		0.079
0.60	217.60	381	0.000									0.080		0.080
0.80	217.80	592	0.000									0.081		0.081
1.00	218.00	802	0.000									0.082		0.082
1.20	218.20	1,011	0.000									0.083		0.083
1.40	218.40	1,217	0.000									0.084		0.084
1.60	218.60	1,420	0.000									0.085		0.085
1.80	218.80	1,619	0.000									0.086		0.086
2.00	219.00	1,813	0.000									0.087		0.087
2.20	219.20	2,001	0.000									0.088		0.088
2.40	219.40	2,182	0.000									0.089		0.089
2.60	219.60	2,352	0.044 ic									0.090		0.134
2.80	219.80	2,511	0.371 ic									0.091		0.462
3.00	220.00	2,650	0.945 ic									0.092		1.038
3.20	220.20	2,760	1.673 ic									0.093		1.766
3.40	220.40	2,871	2.405 ic									0.094		2.499
3.60	220.60	2,981	2.907 oc									0.095		3.002
3.80	220.80	3,092	3.357 oc									0.096		3.453
4.00	221.00	3,203	3.753 oc									0.097		3.850

12-13-2023

Hydrology Studio v 3.0.0.29

SC-1I

Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

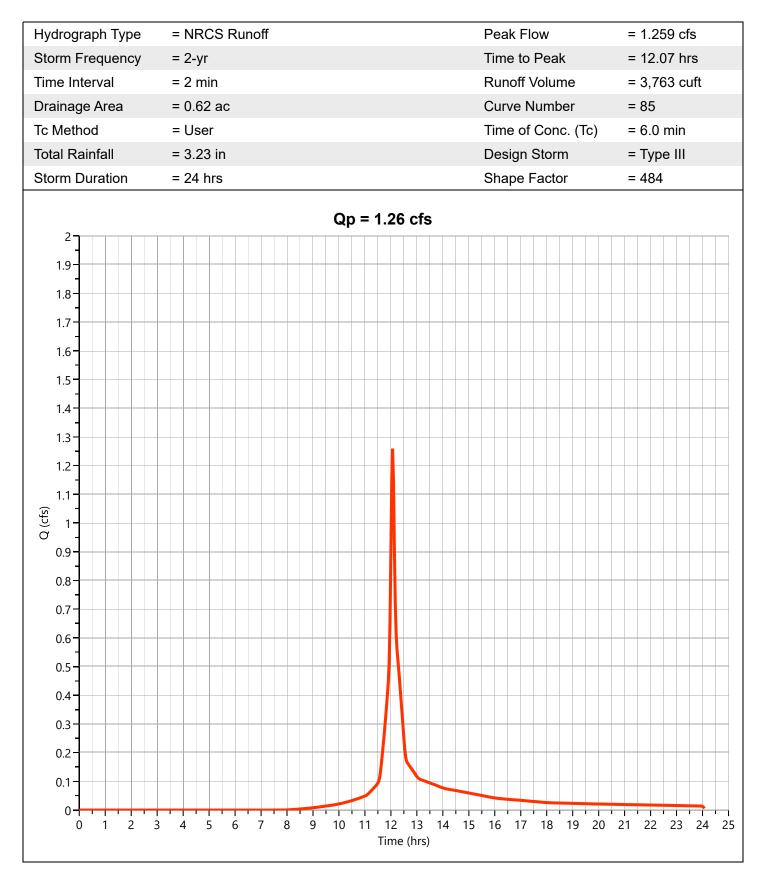
1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.48	46.83
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.14	5.36
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN so	purce per line.	-		Totals =	0.62	52.19
CN (weighted	d) = total product = 52.19 =	84.83	; Use	CN =	85]

CN (weighted) = total product total area

2. Runoff

Frequency..... yr Rainfall, P (24-hour)..... in Runoff, Q..... in (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)

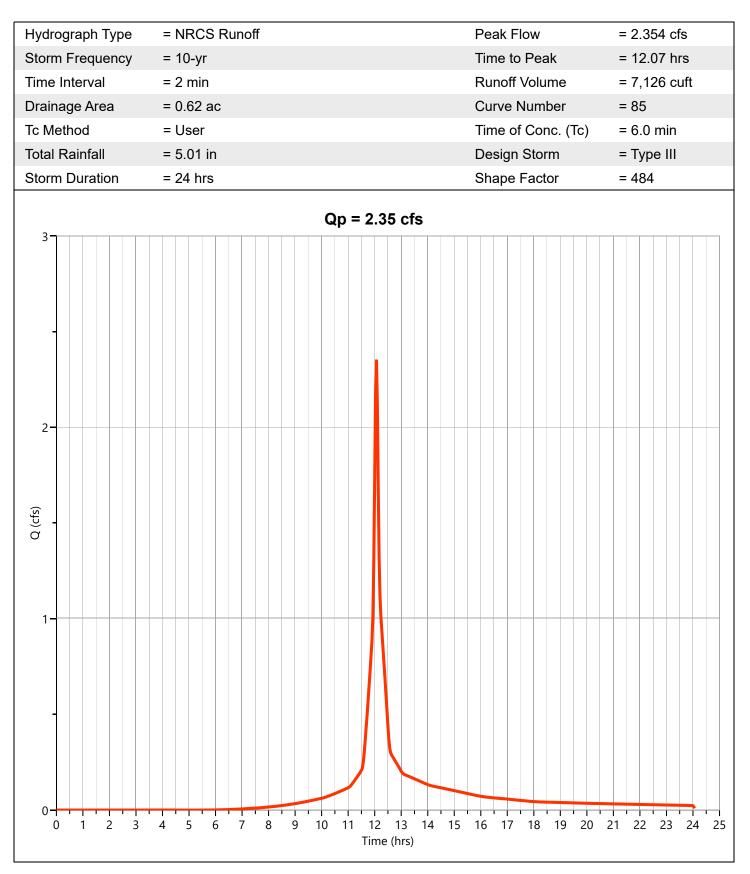

Storm #1 Storm #2 Storm #3 100 2 10 3.23 5.01 7.83 1.77 3.36 6.03

0.62

Hydrology Studio v 3.0.0.29

Subcatchment P-1J

Project	Name:

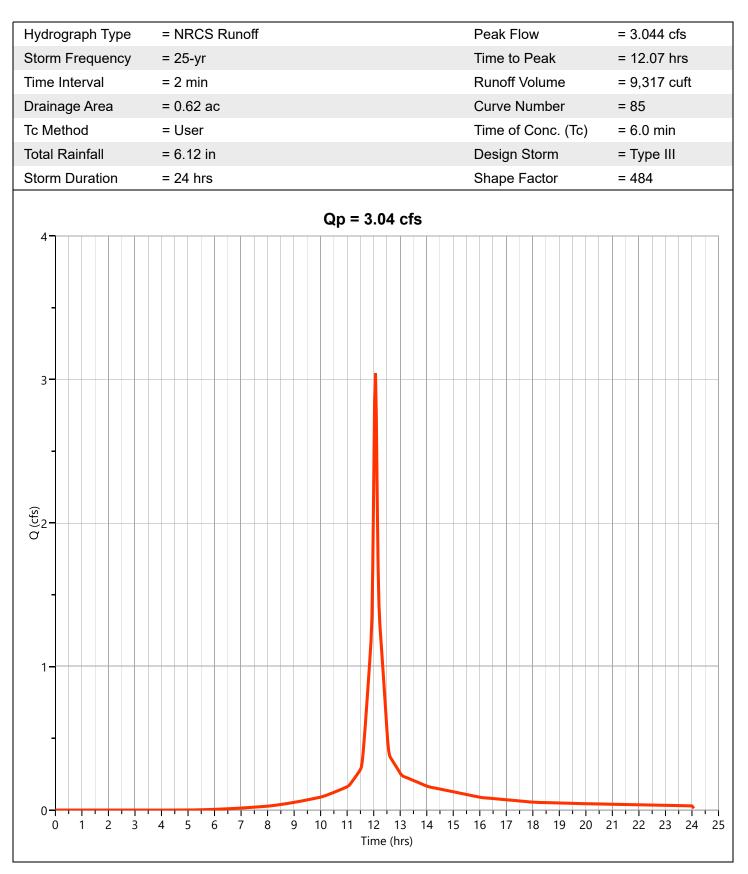


Hydrology Studio v 3.0.0.29

Subcatchment P-1J

1	2-1	4-	20	23

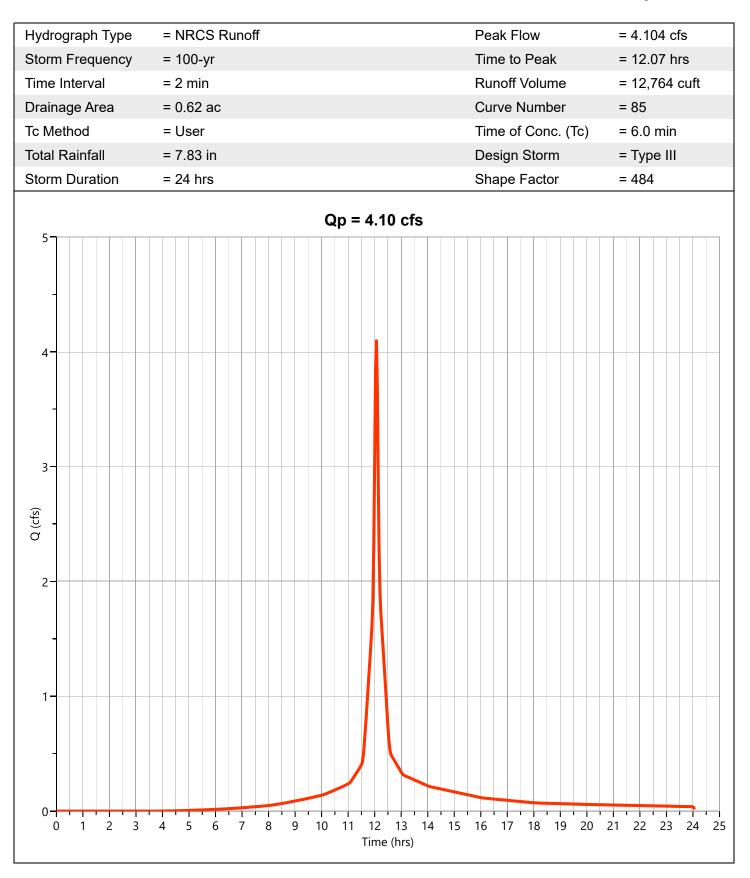
Project Name:



Hydrology Studio v 3.0.0.29

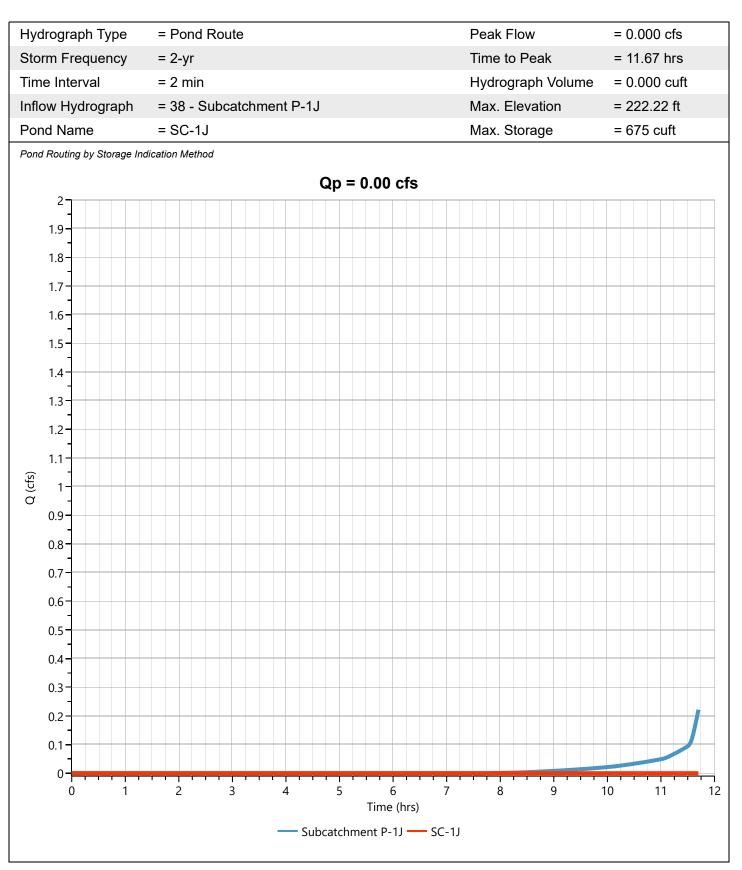
Subcatchment P-1J

1	2-'	14-	20	23


Project Name:

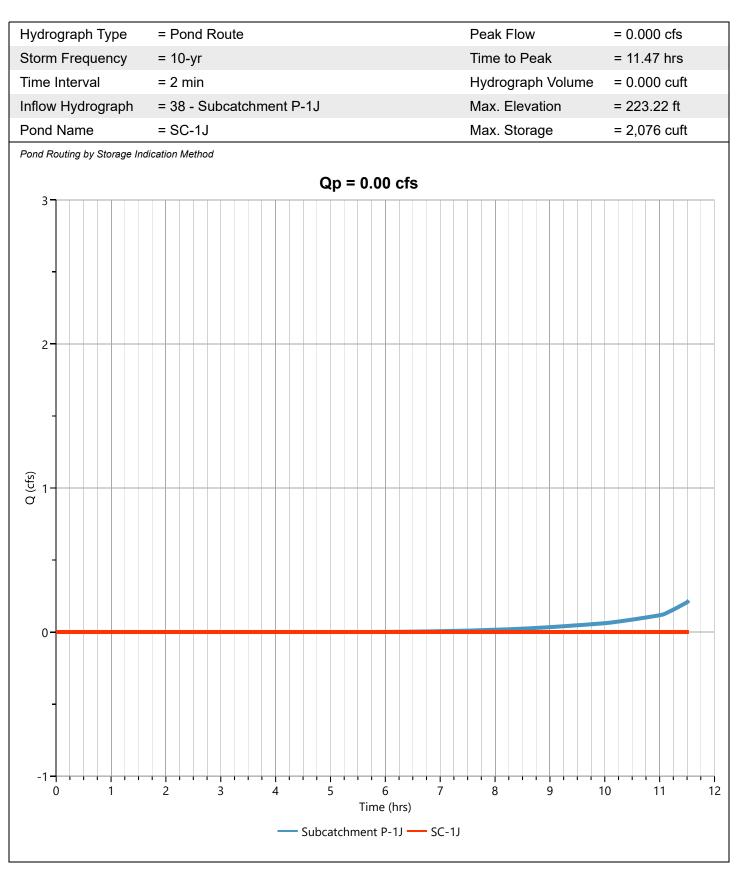
Hydrology Studio v 3.0.0.29

Subcatchment P-1J


Project Name:

Hydrology Studio v 3.0.0.29

SC-1J


12-14-2023

Hydrology Studio v 3.0.0.29

SC-1J

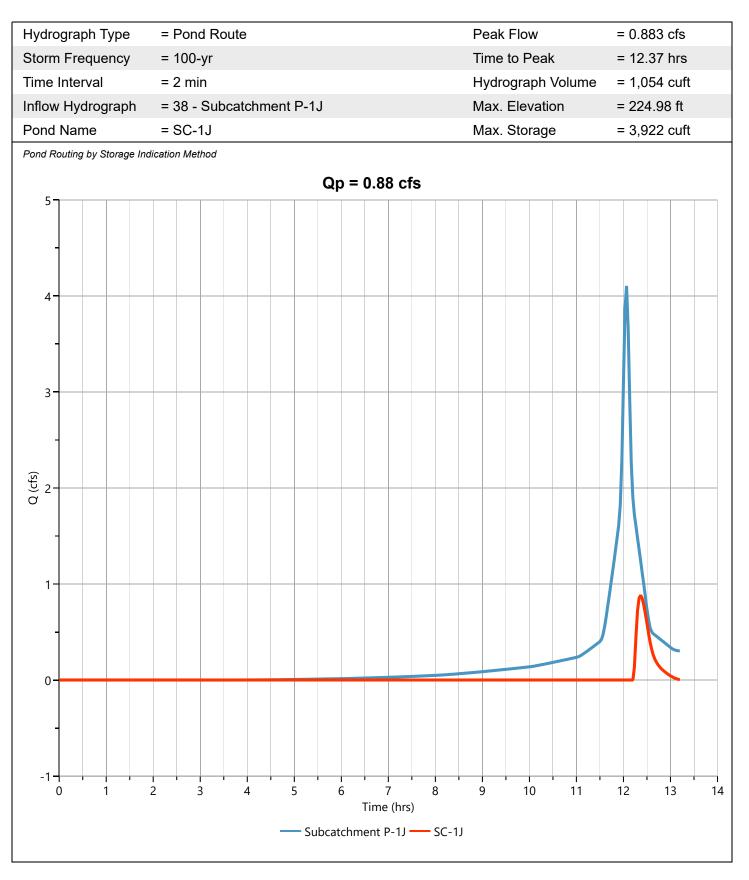
12-14-2023

Hydrology Studio v 3.0.0.29

SC-1J

Project Name:

12-14-2023


ydrograph Type	= Pond Route				Peak Flow		= 0.000 cfs		
torm Frequency	= 25-yr				Time to Pe		= 8.60 hrs		
ime Interval	= 2 min					h Volume	= 0.000 cuft		
nflow Hydrograph	= 38 - Subcatch	nment P-1J			Max. Elev	ation	= 224.00 ft		
ond Name	= SC-1J				Max. Stora	age	= 3,050 cuf	ť	
ond Routing by Storage In	dication Method								
		(Qp = 0.0)0 cfs					
4									
-									
3-									
2									
1-									
-									
0-									
-1 <mark>-1</mark> -1 0 1	2	3	4 Tim	e (hrs)	6	7	8		
		- Rea'd Stor -		chment P-1J	<u></u> SC-1J				

Hydrology Studio v 3.0.0.29

SC-1J

12-14-2023

Project Name:

Hydrology Studio v 3.0.0.29

SC-1J

12-14-2023

Stage-Storage

StormTech® SC-740™ Ch	amber			Stage / Stora	ige Table	
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Chamber Height, in	30					
Chamber Shape	Arch	0.0 2.1	221.50 221.68	1,848 1,848	0.000	0.000
•		4.2	221.68	1,848	129	259
Chamber Width, in	51	6.3	222.03	1,848	145	404
Installed Length, ft	7.12	8.4	222.20	1,848	249	653
No. Chambers	49	10.5	222.38	1,848	249	902
		12.6	222.55	1,848	247	1,149
Bare Chamber Stor, cuft	2,249	14.7	222.73	1,848	245	1,395
No. Rows	7	16.8	222.90	1,848	243	1,638
		18.9	223.08	1,848	240	1,877
Space Between Rows, in	6	21.0	223.25	1,848	236	2,113
Stone Above, in	6	23.1	223.43	1,848	231	2,344
Stone Below, in	6	25.2	223.60	1,848	225	2,569
Stone Below, In	0	27.3	223.78	1,848	218	2,787
Stone Sides, in	12	29.4	223.95	1,848	209	2,996
Stone Ends, in	12	31.5	224.13	1,848	199	3,195
		33.6	224.30	1,848	185	3,380
Encasement Voids, %	40.00	35.7	224.48	1,848	164	3,544
Encasement Bottom Elevation, ft	221.50	37.8	224.65	1,848	134	3,678
	221.00	39.9 42.0	224.83 225.00	1,848 1,848	129 129	3,807 3,936
225						
224-						3
223						2
222						
221 0 500 100) 150(2000 prage (cuft)	2500 30	000 3500	

Culvert / Orifices

Weirs

225

224-

(ff) 223

222-

0

0.1

0.2 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Discharge (cfs) - Top of Pond - Culvert - Exfil - Total Q

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Hydrology Studio v 3.0.0.29

SC-1J

n

2

1.9

Stage-Discharge

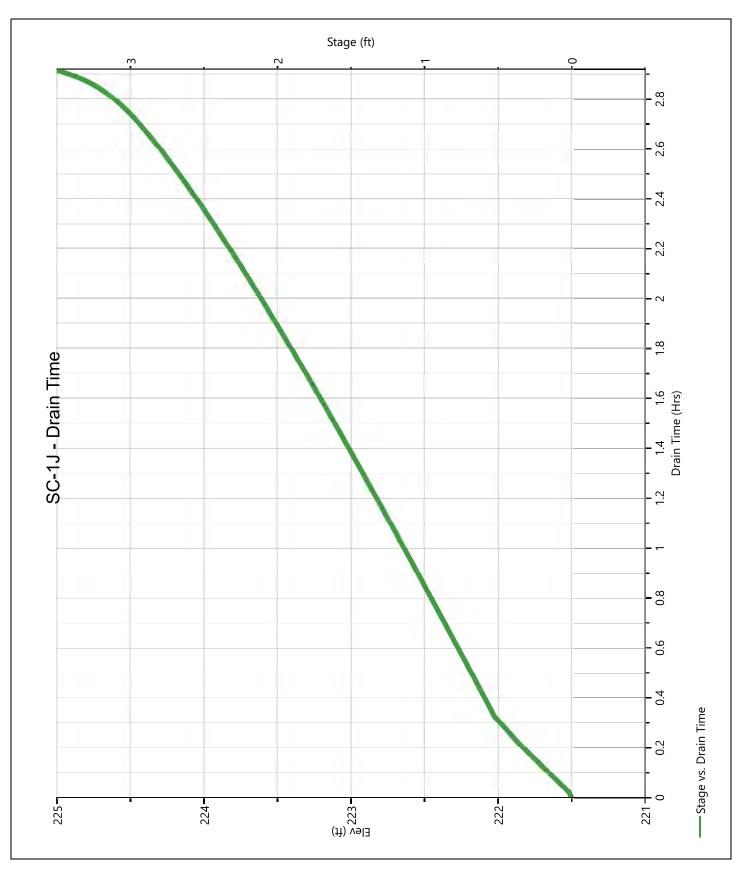
12-14-2023

Orifices Culvert **Perforated Riser** 2 1 3 Rise, in Hole Diameter, in 12 Span, in No. holes 12 No. Barrels 1 Invert Elevation, ft Invert Elevation, ft 224.50 Height, ft Orifice Coefficient, Co 0.60 Orifice Coefficient, Co 49 Length, ft Barrel Slope, % 7.2 N-Value, n 0.012 Weirs **Riser*** Ancillary 2 3 1 Exfiltration, in/hr 8.27** Shape / Type Crest Elevation, ft Crest Length, ft Angle, deg Weir Coefficient, Cw *Routes through Culvert. **Exfiltration extracted from outflow hydrograph. Rate applied to contours. Stage-Discharge 3 Stage (ft) 2

Hydrology Studio v 3.0.0.29

SC-1J

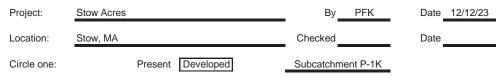
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	orage Culvert	c	Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	221.50	0.000	0.000									0.000		0.000
0.18	221.68	129	0.000									0.355		0.355
0.35	221.85	259	0.000									0.356		0.356
0.53	222.03	404	0.000									0.357		0.357
0.70	222.20	653	0.000									0.358		0.358
0.88	222.38	902	0.000									0.359		0.359
1.05	222.55	1,149	0.000									0.360		0.360
1.23	222.73	1,395	0.000									0.361		0.361
1.40	222.90	1,638	0.000									0.362		0.362
1.58	223.08	1,877	0.000									0.363		0.363
1.75	223.25	2,113	0.000									0.364		0.364
1.93	223.43	2,344	0.000									0.365		0.365
2.10	223.60	2,569	0.000									0.366		0.366
2.28	223.78	2,787	0.000									0.367		0.367
2.45	223.95	2,996	0.000									0.368		0.368
2.63	224.13	3,195	0.000									0.369		0.369
2.80	224.30	3,380	0.000									0.370		0.370
2.97	224.48	3,544	0.000									0.371		0.371
3.15	224.65	3,678	0.098 ic									0.372		0.469
3.32	224.83	3,807	0.430 ic									0.373		0.803
3.50	225.00	3,936	0.945 ic									0.374		1.319

12-14-2023

Hydrology Studio v 3.0.0.29

SC-1J



12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.00	0.00
A	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			2.10	147.23
С	Open Space - Good Condition	74			1.42	104.87
D	BVW	77			0.62	47.72
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			20.11	1588.76
1/ Use only one CN s	source per line.			Totals =	24.25	1888.58

77.88;

78

Use CN =

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Storm #1	Storm #2	Storm #3
2	10	100
3.23	5.01	7.83

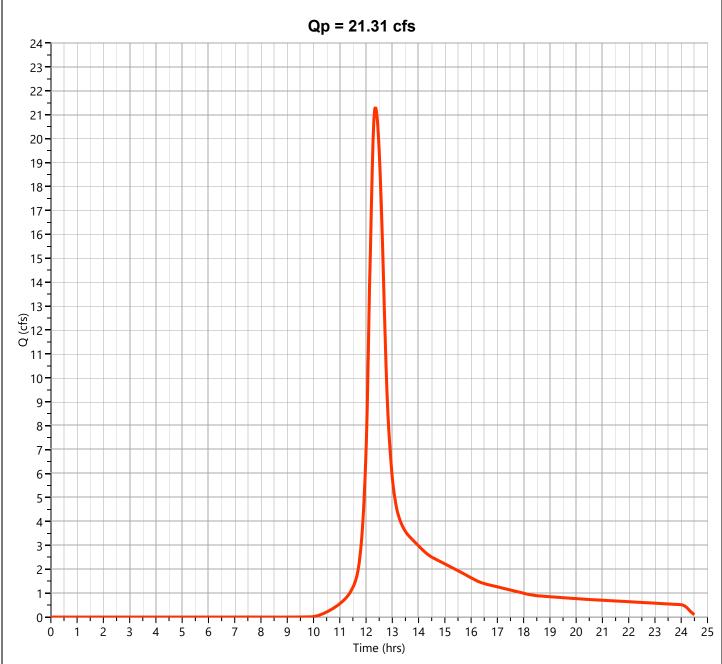
2.71

5.22

1888.58 =

24.25

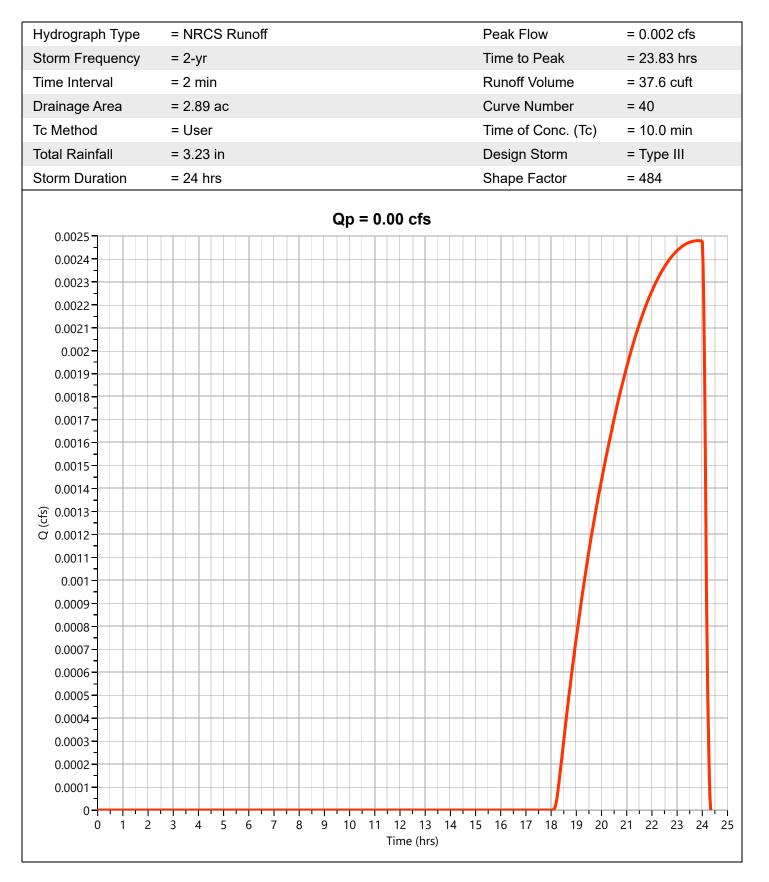
_ =


1.29

Hydrology Studio v 3.0.0.29

Subcatchment P-1K

Hydrograph Type	= NRCS Runoff	Peak Flow	= 21.31 cfs
Storm Frequency	= 2-yr	Time to Peak	= 12.37 hrs
Time Interval	= 2 min	Runoff Volume	= 114,029 cuft
Drainage Area	= 24.25 ac	Curve Number	= 78
Tc Method	= User	Time of Conc. (Tc)	= 27.5 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484


12-13-2023

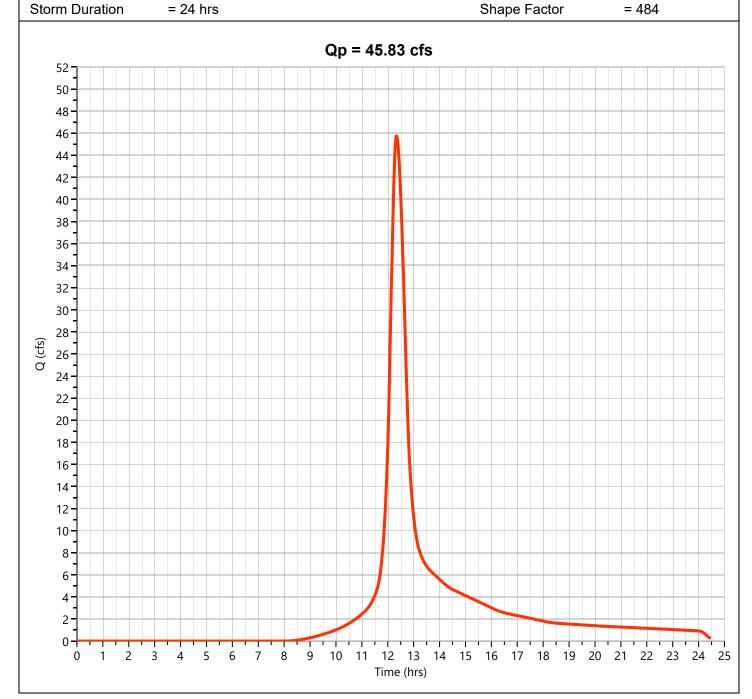
Hydrology Studio v 3.0.0.29

Subcatchment P-1L

12-13-2023

Project Name:

Hydrology Studio v 3.0.0.29


Subcatchment P-1K

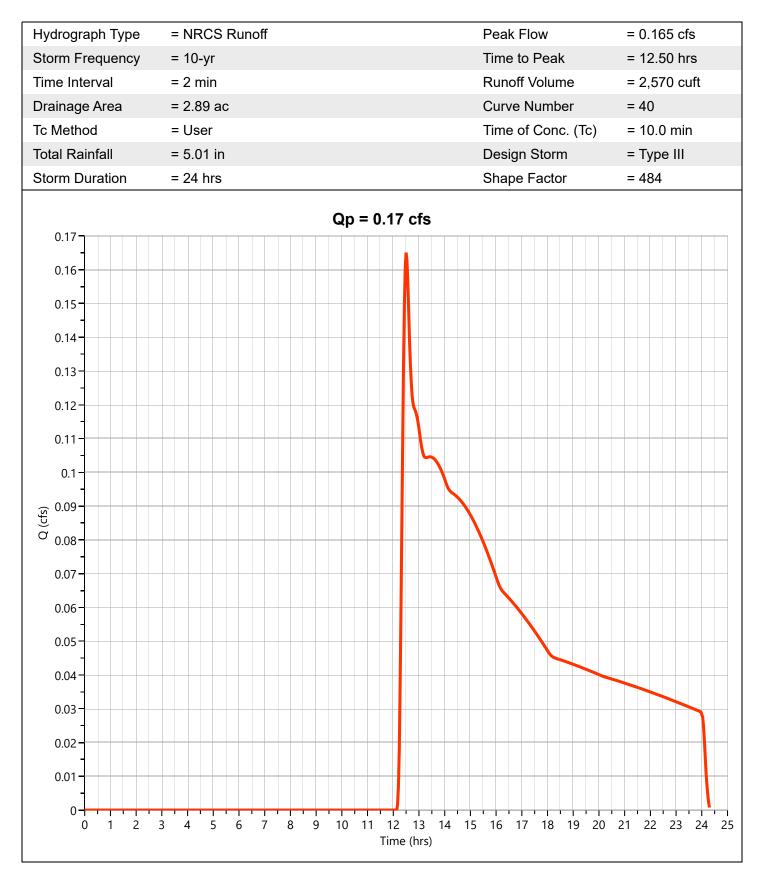
Hydrograph Type	= NRCS Runoff	Peak Flow	= 45.83 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.33 hrs
Time Interval	= 2 min	Runoff Volume	= 239,451 cuft
Drainage Area	= 24.25 ac	Curve Number	= 78
Tc Method	= User	Time of Conc. (Tc)	= 27.5 min

Design Storm

Total Rainfall

= 5.01 in

12-13-2023

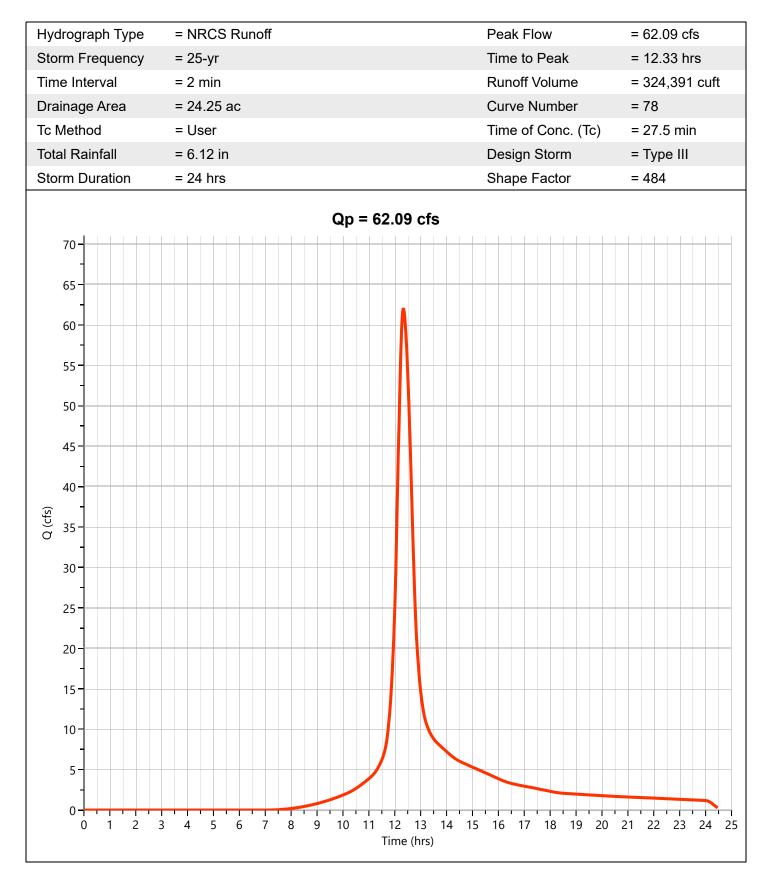

Hyd. No. 40

= Type III

Hydrology Studio v 3.0.0.29

Subcatchment P-1L

Project Name:

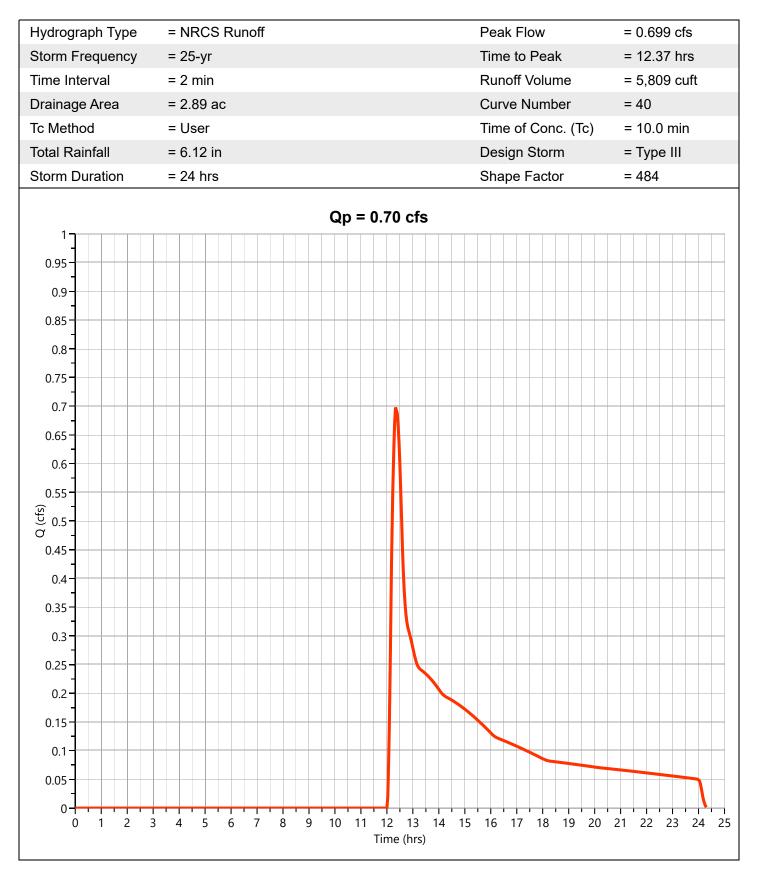


Hydrology Studio v 3.0.0.29

Subcatchment P-1K

12-13-2023

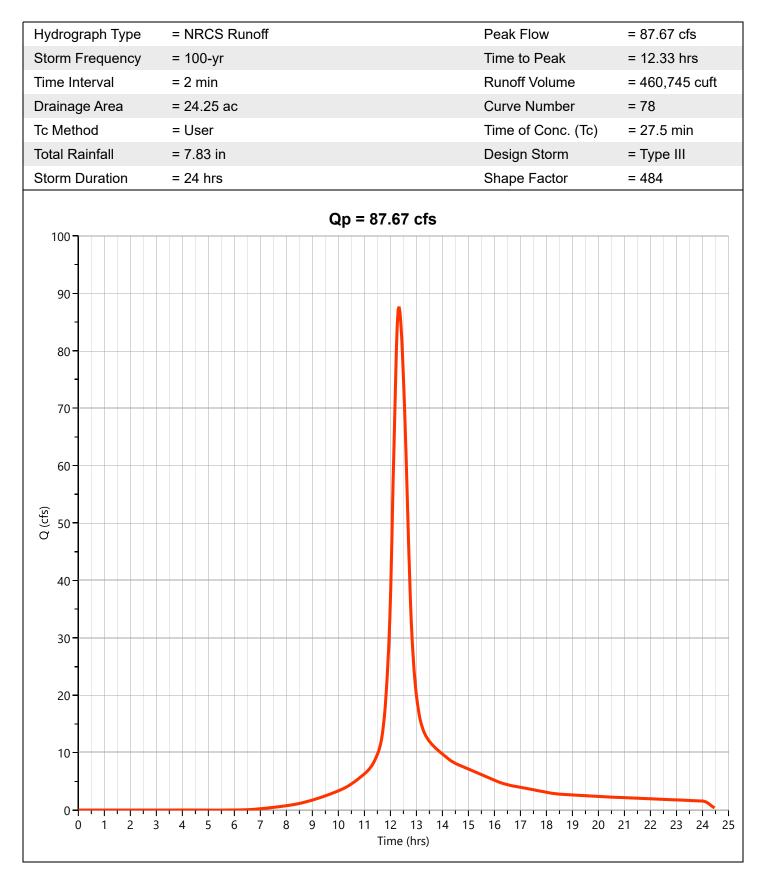
Project Name:



Hydrology Studio v 3.0.0.29

Subcatchment P-1L

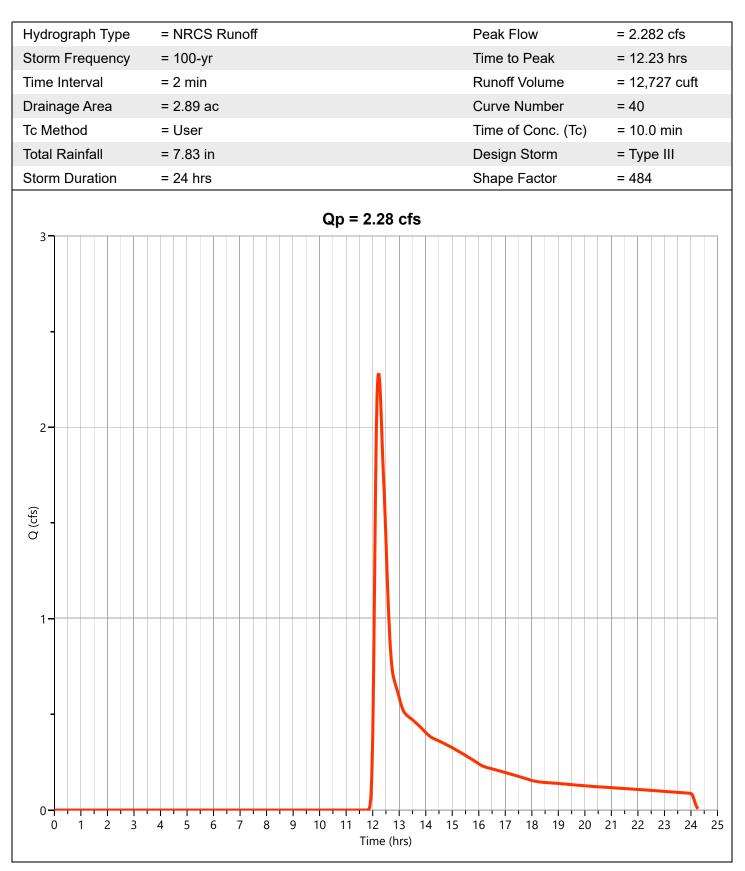
12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment P-1K

12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment P-1L

1	2-	13-	.20)23

Hyd. No. 41

Project Name:

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 Stow Acres By PFK Date 12/12/2023 Stow, MA Checked _____ Date_____

Circle one: Present Developed Subcatchment P-1K Circle one: Тс Τt through subarea

Sheet flow (Applicable to Tc only)	Segment ID	A-B			
1. Surface Description (table 3-1)		Wooded			
2. Mannings roughness coeff., n (table 3-1)		0.6			
3. Flow length, L (total L <= 300 ft)	ft	50			
4. Two-yr 24-hr rainfall, P2	in	3.1			
5. Land Slope, s	ft/ft	0.020			
6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4)	Compute Tt hr	0.29			0.29
Shallow concentrated Flow	Segment ID	B-C	C-D	D-E	

ft

ft/ft

ft/s

Compute Tt hr

7. Surface Description (paved or unpaved)

Project:

Location:

8. Flow Length, L 9. Watercourse slope, s 10. Average Velocity, V (figure 3-1)

11. Tt = L / 3600V

	0.29		
-			
nt ID	B-C	C-D	D-E
	UNPAVED	UNPAVED	UNPAVED
	1293	91	165
	0.023	0.05	0.036
	2.45	3.61	3.06
	0.15	0.01	0.01

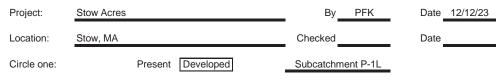
0.17

Channel flow	Segment ID	
12. Cross sectional flow area, a	sf	-
13. Wetted perimeter, pw	ft l	-
14. Hydraulic radius, r=a/wp	Compute r ft	
15. Channel Slope, s	ft/ft	
16. Manning's roughness coeff., n		
17. V = 1.49 r^2/3 s^1/2 / n	Compute V ft/s	
18. Flow length, L	ft	
19. Tt = L / 3600V	Compute Tt hr	

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

0.46 27.5


hr

min

29

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Cover description (cover type, treatment, and	CN 1/	Area	Product of CN x Area		
hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
Impervious	98			0.00	0.00
Woods - Good Condition	30			0.14	4.32
Open Space - Good Condition	39			2.44	95.14
Woods - Good Condition	70			0.00	0.00
Open Space - Good Condition	74			0.00	0.00
BVW	77			0.00	0.00
Gravel	76			0.00	0.00
OFFSITE AREA - 1 ACRE LOTS	51			0.31	15.83
OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
CN source per line.			Totals =	2.89	115.29
	hydrologic condition: percent impervious: area ratio) Moods - Good Condition Open Space - Good Condition Woods - Good Condition Woods - Good Condition Open Space - Good Condition BVW Gravel OFFSITE AREA - 1 ACRE LOTS OFFSITE AREA - 1 ACRE LOTS	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)Table 2-2Impervious98Woods - Good Condition30Open Space - Good Condition39Woods - Good Condition70Open Space - Good Condition70Open Space - Good Condition71BVW77Gravel76OFFSITE AREA - 1 ACRE LOTS51OFFSITE AREA - 1 ACRE LOTS79Impervious79	(cover type, treatment, and hydrologic condition: percent impervious area ratio)Table 2-2Fig. 2-3Impervious98	(cover type, treatment, and hydrologic condition: percent impervious: area ratio)Table 2-2Fig. 2-3Fig. 2-4Impervious98Impervious98Woods - Good Condition30Open Space - Good Condition39Woods - Good Condition70Open Space - Good Condition70Open Space - Good Condition74Open Space - Good Condition74Open Space - Good Condition74Open Space - Good Condition76Open Space - Good Condition76Open Space - Good Condition76OPen Space - Good Condition76OFFSITE AREA - 1 ACRE LOTS51OFFSITE AREA - 1 ACRE LOTS79OFFSITE AREA - 1 ACRE LOTS79OFFSITE AREA - 1 ACRE LOTSOFFSITE AREA - 1 ACRE LOTSOFFSITE AREA - 1 ACRE LOTSOFFSITE AREA - 1 ACRE LOTSOF	(cover type, treatment, and hydrologic condition: percent impervious: area ratio) Table 2-2 Fig. 2-3 Fig. 2-4 Acres Impervious 98 0.00 0.00 Woods - Good Condition 30 0 0.14 Open Space - Good Condition 39 0 0.00 Woods - Good Condition 39 0 0.00 Open Space - Good Condition 70 0 0.00 Open Space - Good Condition 70 0 0.00 Open Space - Good Condition 74 0.00 0.00 Open Space - Good Condition 74 0 0.00 Gravel 77 0 0.00 0.00 Gravel 76 0 0.00 0.00 OFFSITE AREA - 1 ACRE LOTS 51 0 0.00 OFFSITE AREA - 1 ACRE LOTS 79 0 0.00 OFFSITE AREA - 1 ACRE LOTS 1 0 0 OFFSITE AREA - 1 ACRE LOTS 9 0 0 OFFSITE AREA - 1 ACRE LOTS 0 0 0 OFFSITE AREA - 1 ACRE LOTS 0 0 0

115.29 =

Storm #3

100

7.83

1.16

2.89

Storm #2

10

5.01

0.23

=

Storm #1

2 3.23

0.00

39.84 ;

40

Use CN =

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,)	in

or eqs. 2-3 and 2-4.)

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment P-1L Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.050 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.20 0.20 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 448 9. Watercourse slope, s ft/ft 0.01 10. Average Velocity, V (figure 3-1) ft/s 1.61 11. Tt = L / 3600V Compute Tt hr 0.08 0.08 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw

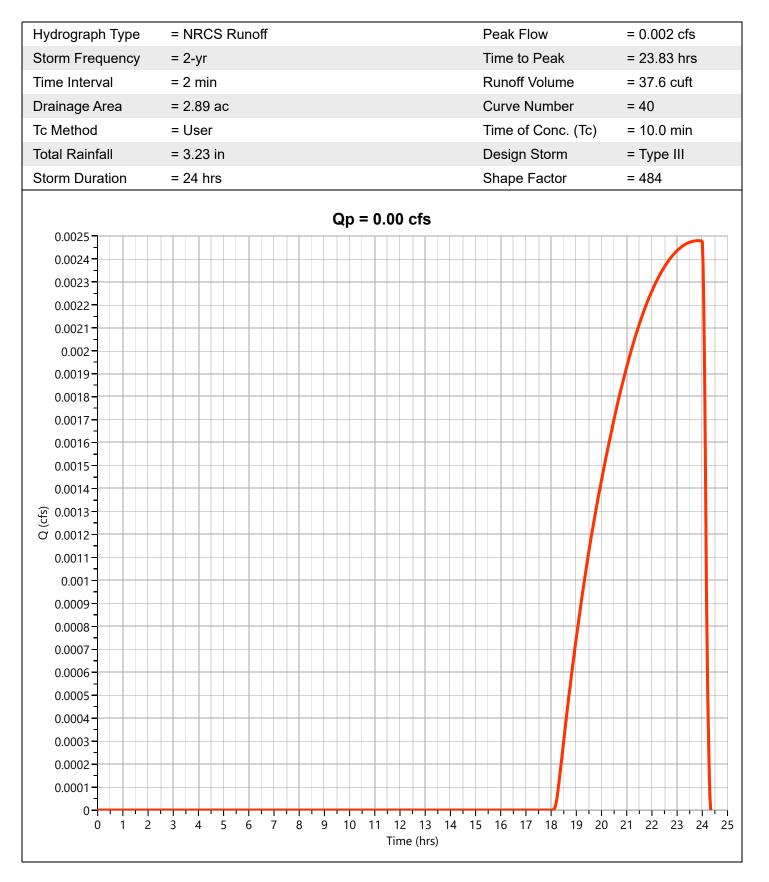
12. Cross sectional flow area, asf13. Wetted perimeter, pwft14. Hydraulic radius, r=a/wpCompute r15. Channel Slope, sft/ft16. Manning's roughness coeff., n17. V = $1.49 r^{2/3} s^{1/2} / n$ 18. Flow length, L19. Tt = L / 3600V20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3

min

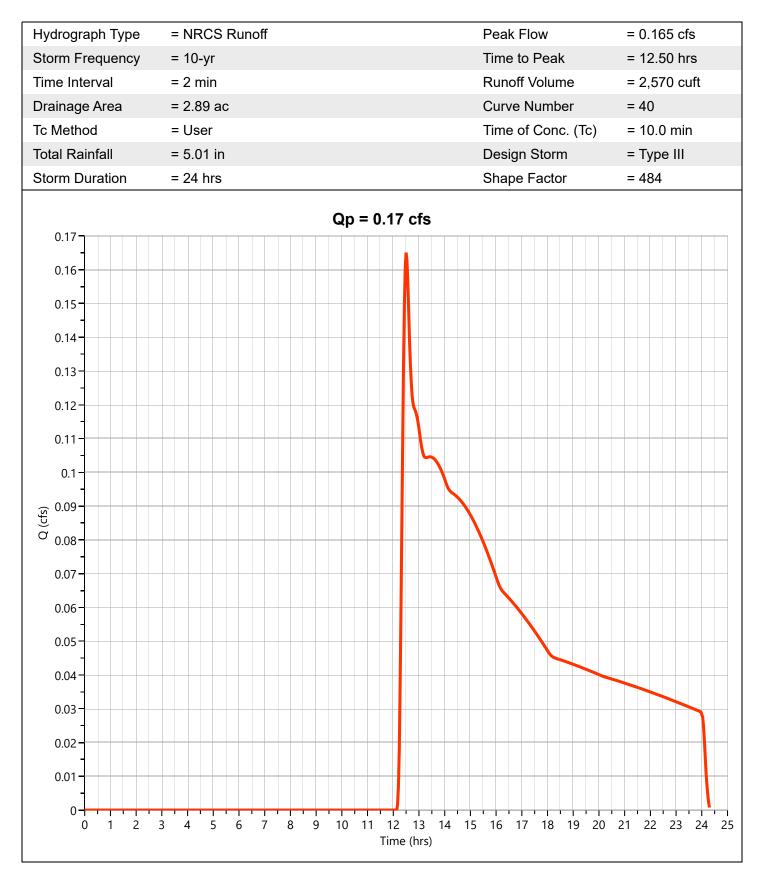
0


0.28 16.6

Hydrology Studio v 3.0.0.29

Subcatchment P-1L

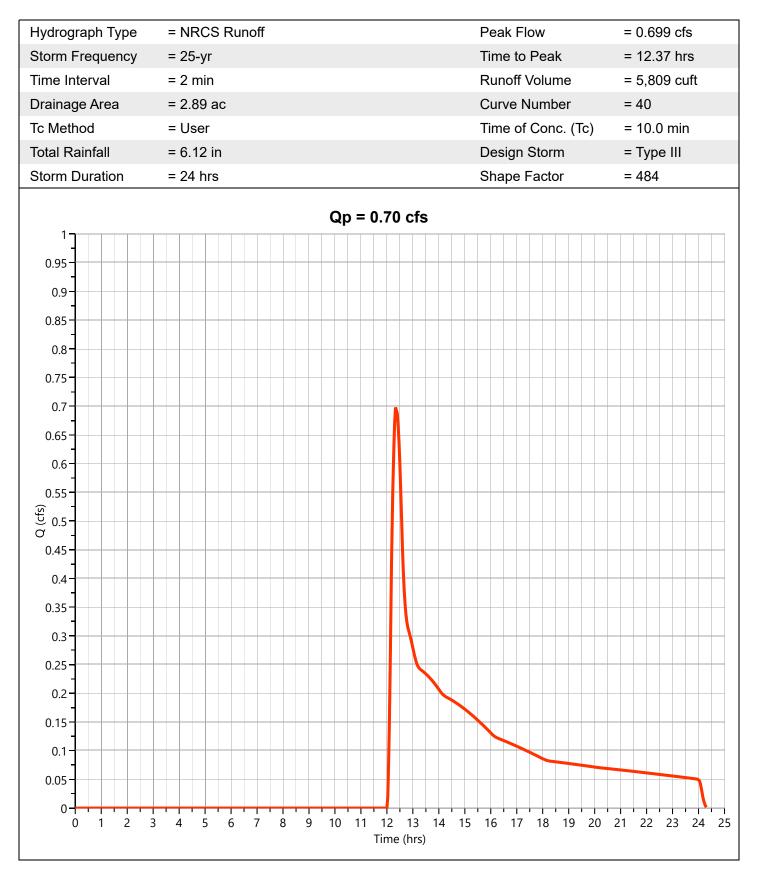
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment P-1L

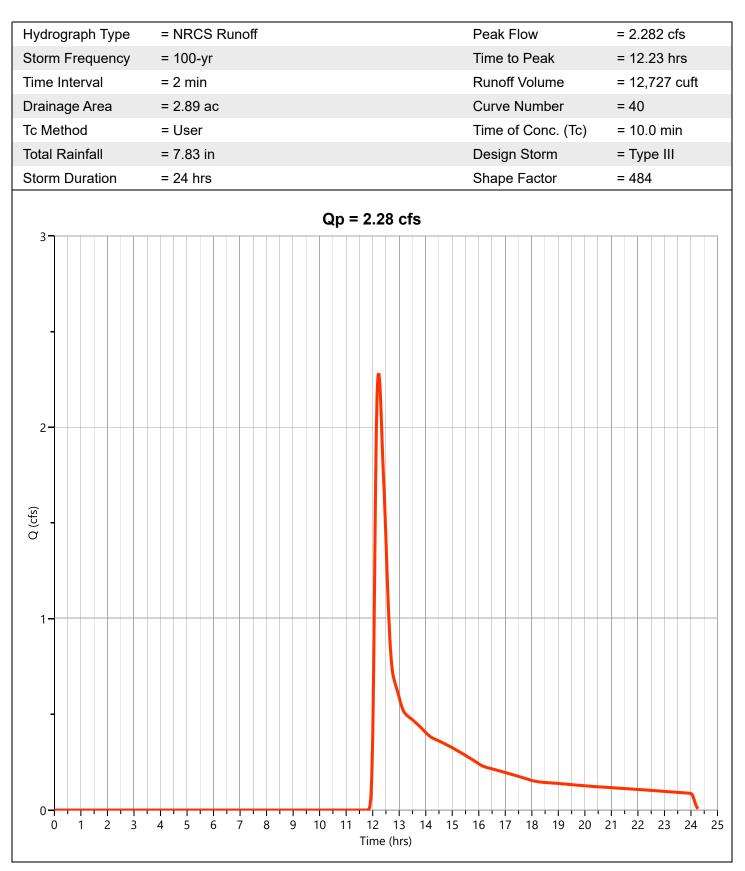
Project Name:



Hydrology Studio v 3.0.0.29

Subcatchment P-1L

12-13-2023

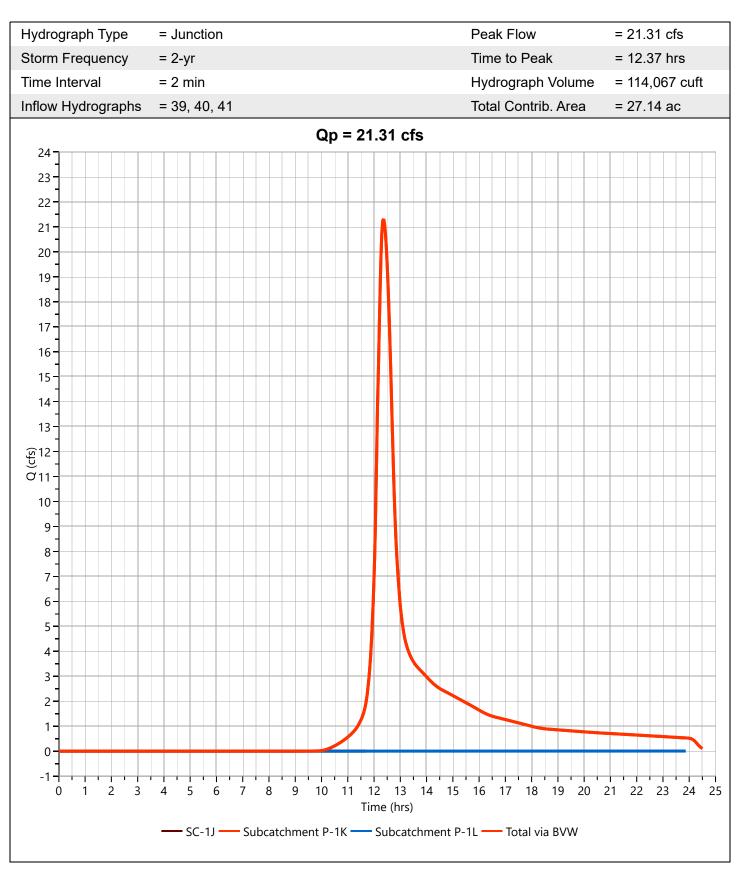


Hydrology Studio v 3.0.0.29

Subcatchment P-1L

1	2-	13-	.20)23

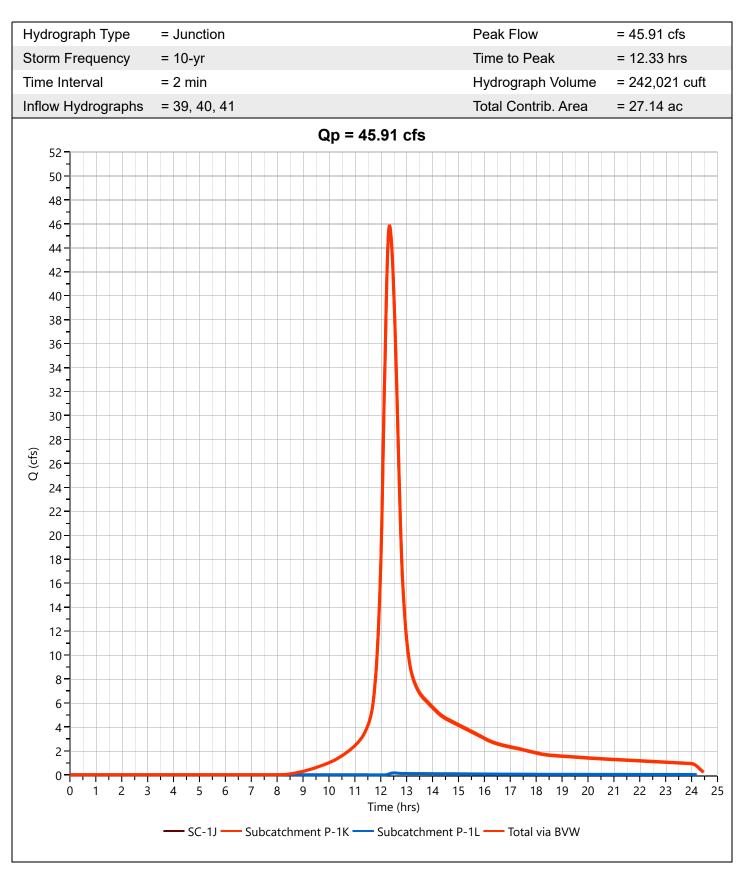
Hyd. No. 41


Project Name:

Hydrology Studio v 3.0.0.29

Total via BVW

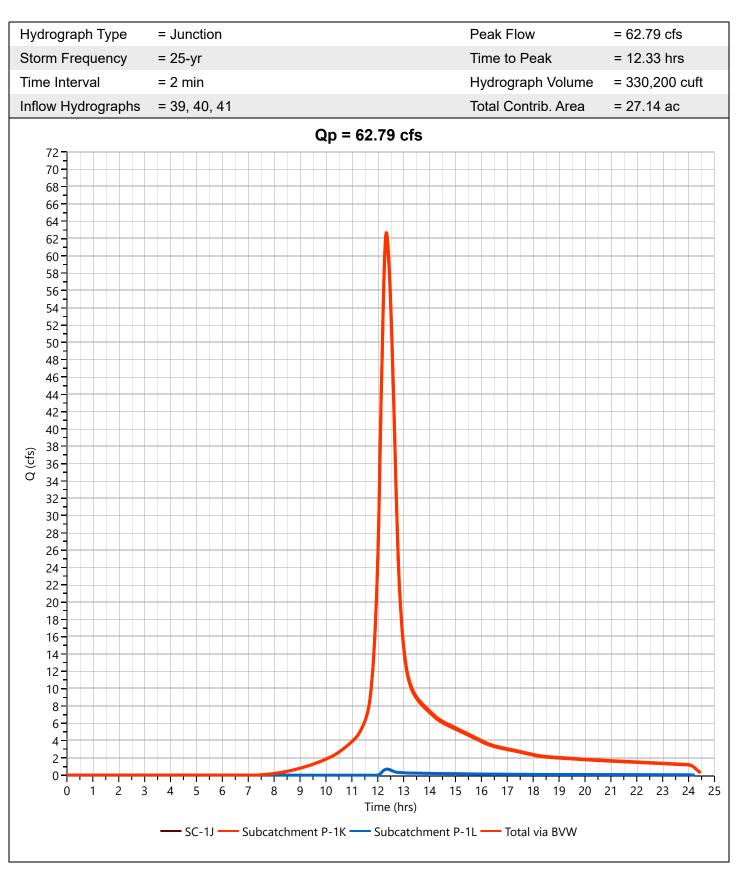
12-14-2023


Project Name:

Hydrology Studio v 3.0.0.29

Total via BVW

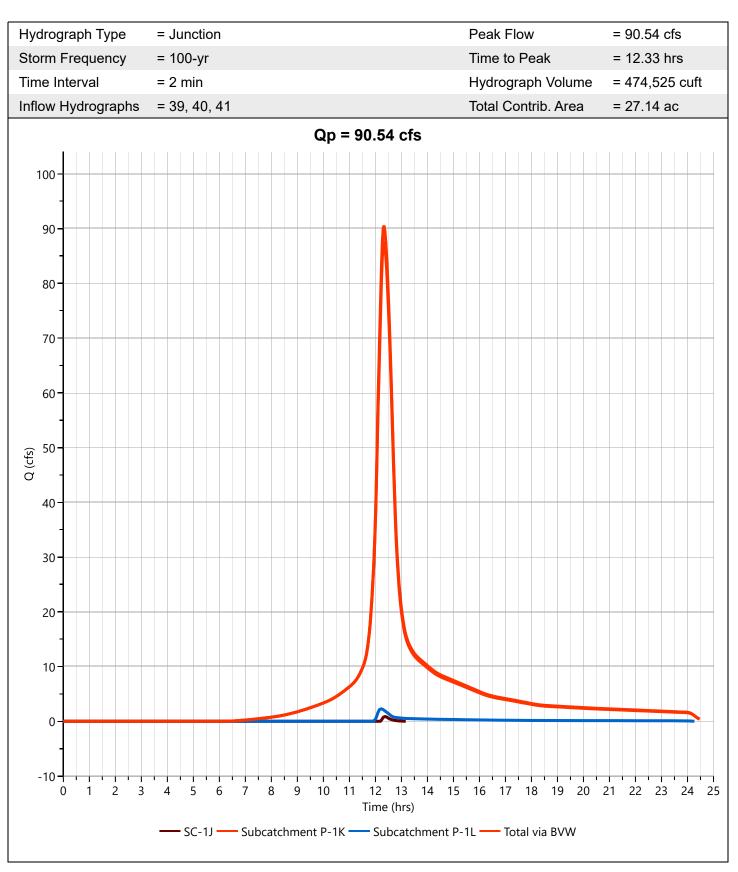
12-14-2023



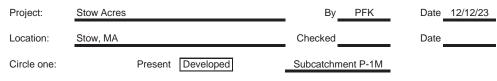
Hydrology Studio v 3.0.0.29

Total via BVW

12-14-2023


Project Name:

Hydrology Studio v 3.0.0.29


Total via BVW

12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and	CN 1/			Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
	Impervious	98			0.32	31.48
А	Woods - Good Condition	30			0.48	14.38
А	Open Space - Good Condition	39			1.10	42.78
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one	CN source per line.			Totals =	1.90	88.63

88.63

1.90

Storm #2

10

5.01 0.53 =

Storm #3 100

7.83

1.82

=

Storm #1

2

3.23

0.07

CN (weighted) = total product total area

46.7<u>2</u>;

Use CN =

47

2. Runoff

Frequency..... yr Rainfall, P (24-hour)..... in Runoff, Q..... in (Use P and CN with table 2-1, fig. 2-1,)

or eqs. 2-3 and 2-4.)

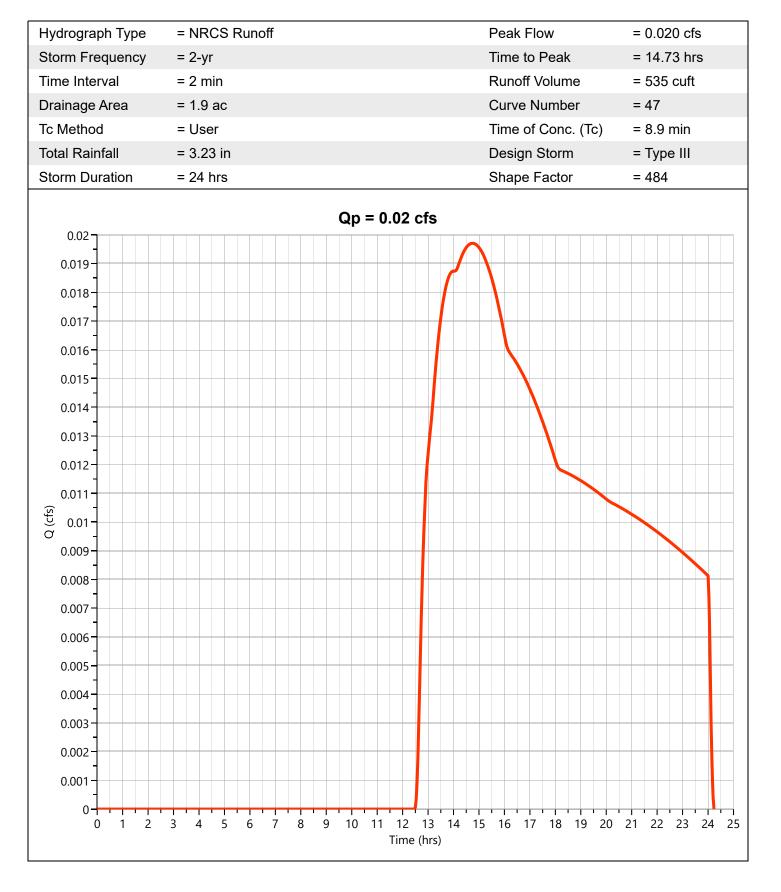
Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment P-1M Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) LAWN 2. Mannings roughness coeff., n (table 3-1) 0.24 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 3.1 in 5. Land Slope, s ft/ft 0.020 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.14 0.14 Shallow concentrated Flow Segment ID B-C C-D D-E 7. Surface Description (paved or unpaved) UNPAVED UNPAVED UNPAVED 8. Flow Length, L ft 33 12 74 9. Watercourse slope, s 0.05 ft/ft 0.02 0.33 10. Average Velocity, V (figure 3-1) ft/s 2.28 9.27 3.61 11. Tt = L / 3600V Compute Tt hr 0.00 0.00 0.01 0.01 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3

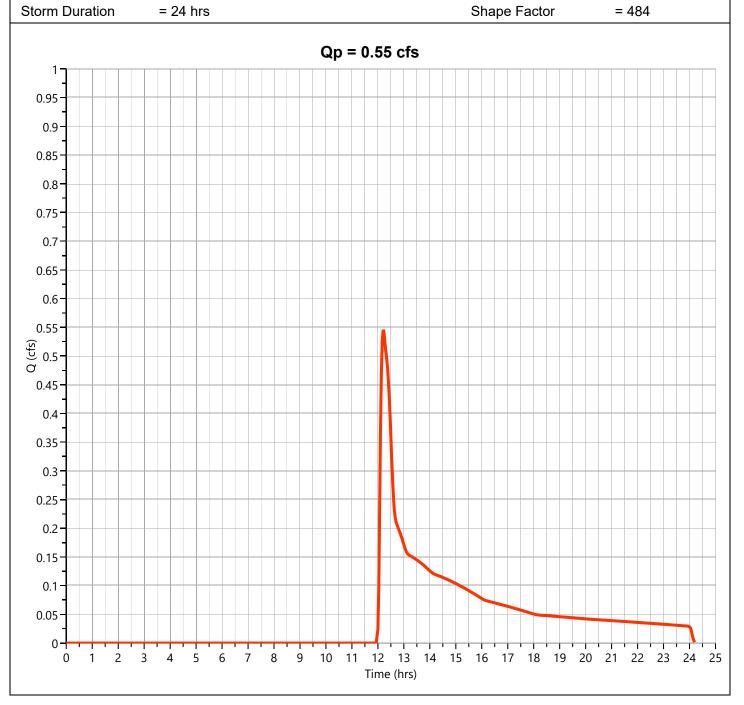
0.15 8.9


hr

min

Hydrology Studio v 3.0.0.29

Subcatchment P-1M

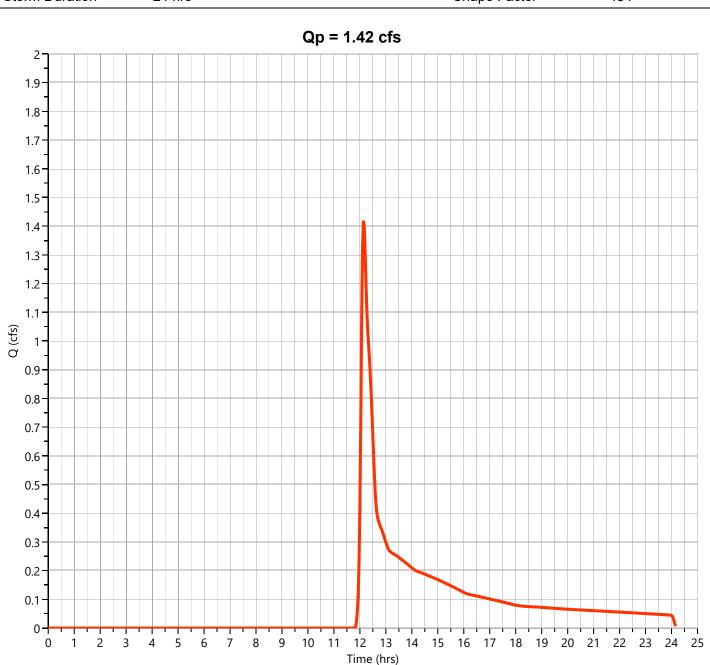

12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1M

= NRCS Runoff	Peak Flow	= 0.546 cfs
= 10-yr	Time to Peak	= 12.20 hrs
= 2 min	Runoff Volume	= 3,727 cuft
= 1.9 ac	Curve Number	= 47
= User	Time of Conc. (Tc)	= 8.9 min
= 5.01 in	Design Storm	= Type III
	= 10-yr = 2 min = 1.9 ac = User	= 10-yrTime to Peak= 2 minRunoff Volume= 1.9 acCurve Number= UserTime of Conc. (Tc)

Project Name:

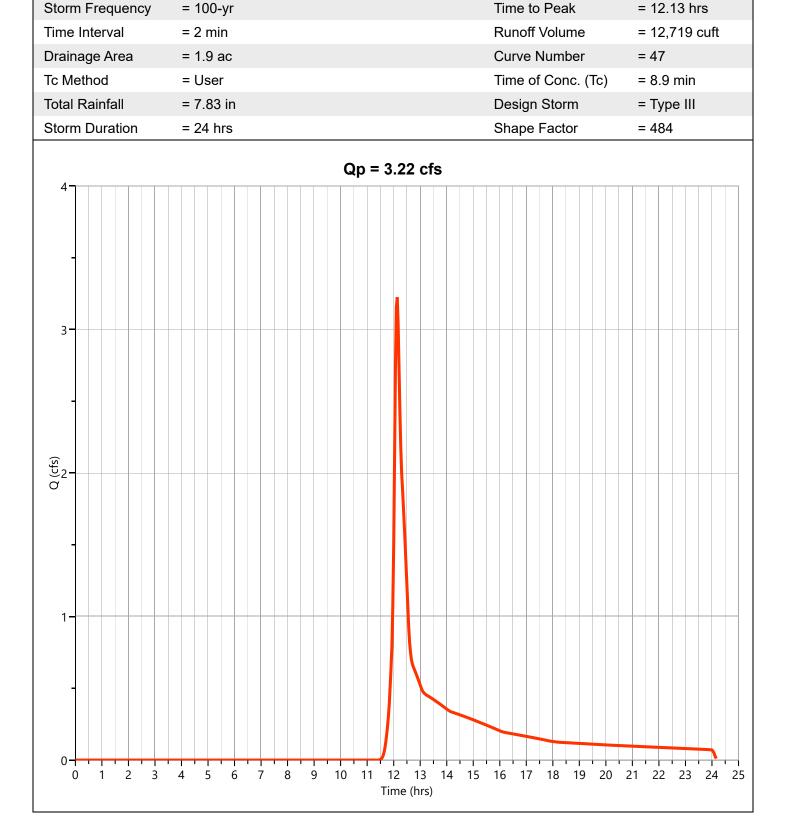

Hyd. No. 43

12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-1M

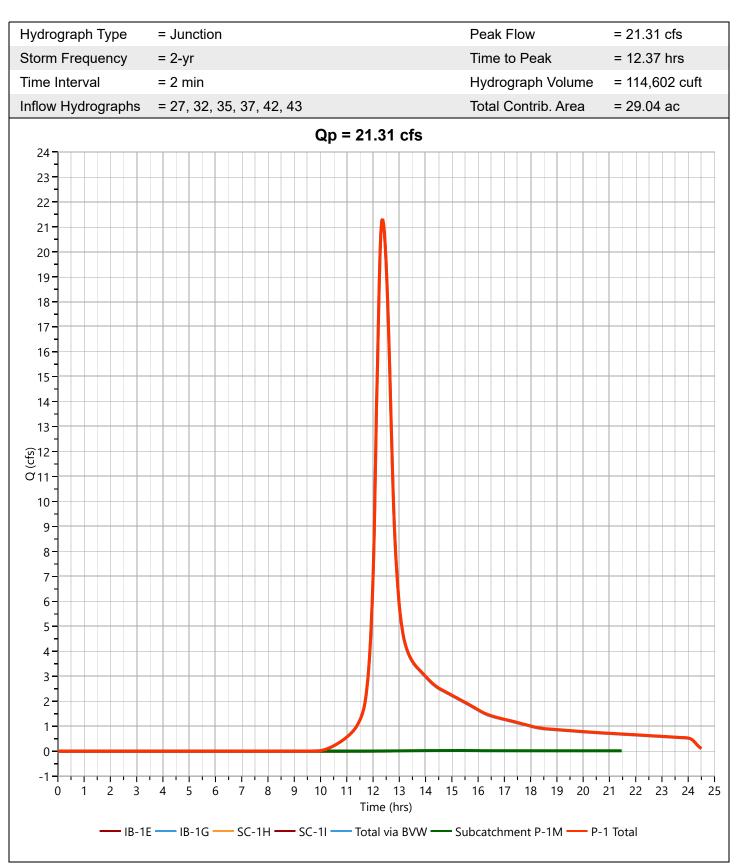
Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.419 cfs
Storm Frequency	= 25-yr	Time to Peak	= 12.13 hrs
Time Interval	= 2 min	Runoff Volume	= 6,803 cuft
Drainage Area	= 1.9 ac	Curve Number	= 47
Tc Method	= User	Time of Conc. (Tc)	= 8.9 min
Total Rainfall	= 6.12 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484


12-14-2023

Hydrology Studio v 3.0.0.29

Hydrograph Type

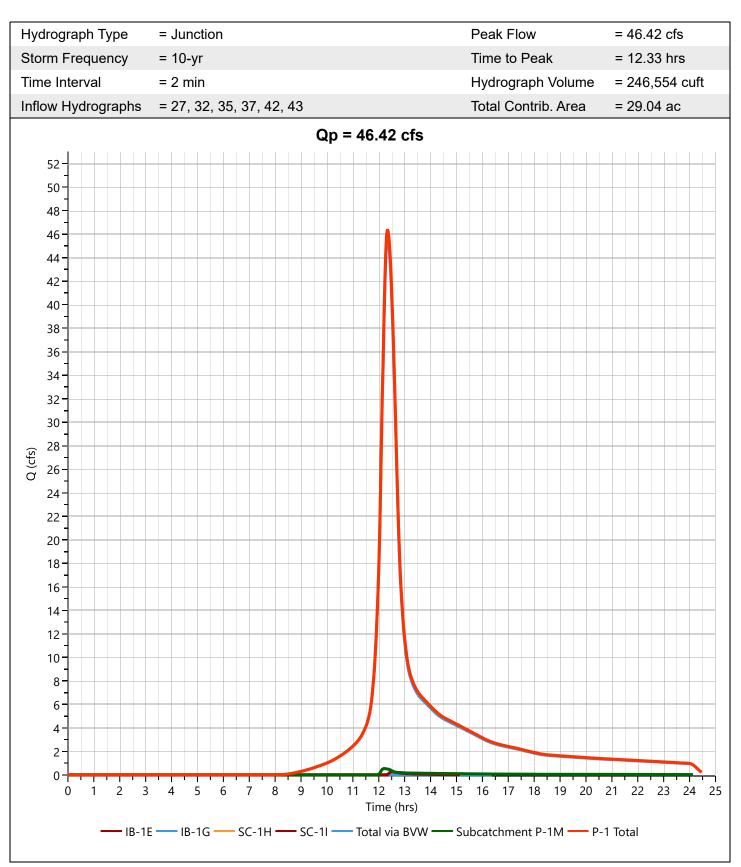
Subcatchment P-1M


12-14-2023

Hydrology Studio v 3.0.0.29

P-1 Total

Project Name:

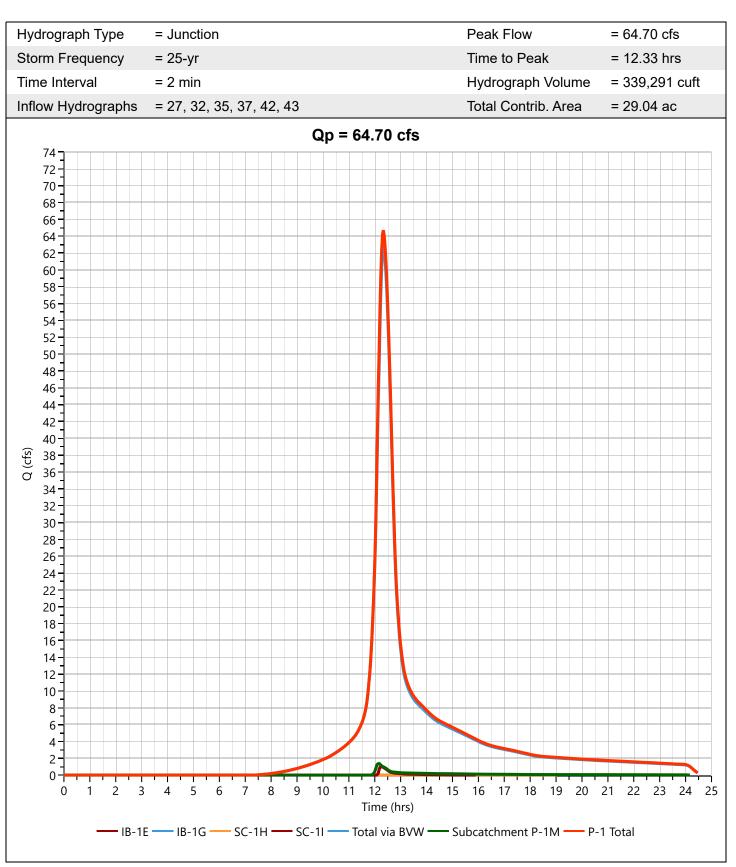


Hydrology Studio v 3.0.0.29

P-1 Total

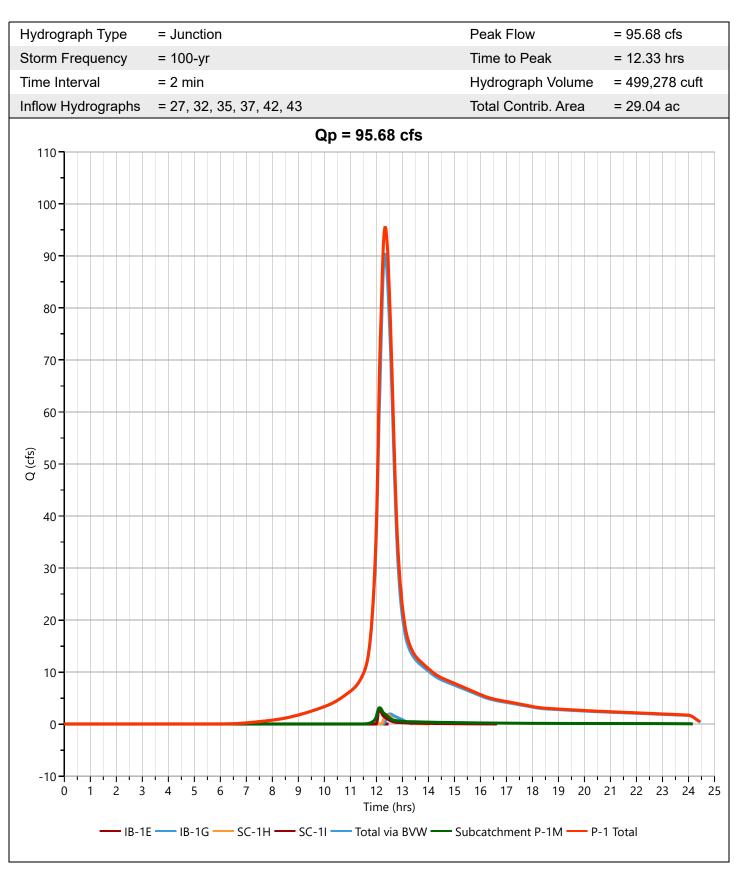
12-14-2023

Project Name:

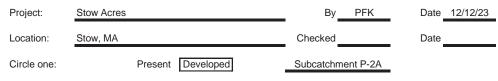


Hydrology Studio v 3.0.0.29

P-1 Total


Project Name:

Hydrology Studio v 3.0.0.29


P-1 Total

12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/			Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.43	42.63
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.40	15.73
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	l source per line.			Totals =	0.84	58.36

69.61;

Use CN =

70

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

 Storm #1
 Storm #2
 Storm #3

 2
 10
 100

 3.23
 5.01
 7.83

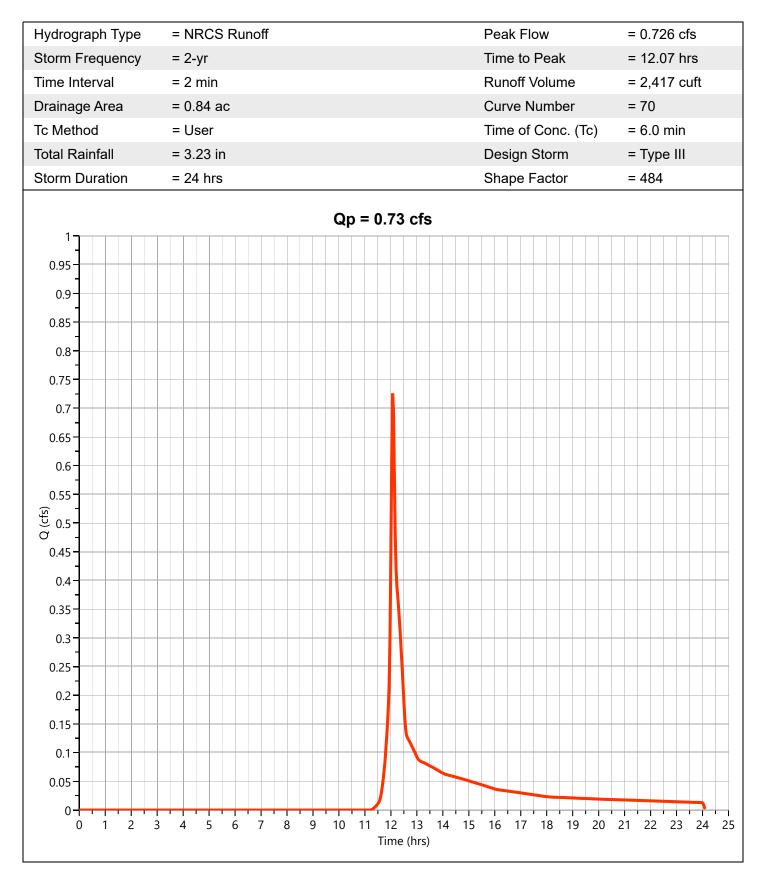
2.01

58.36

0.84

=

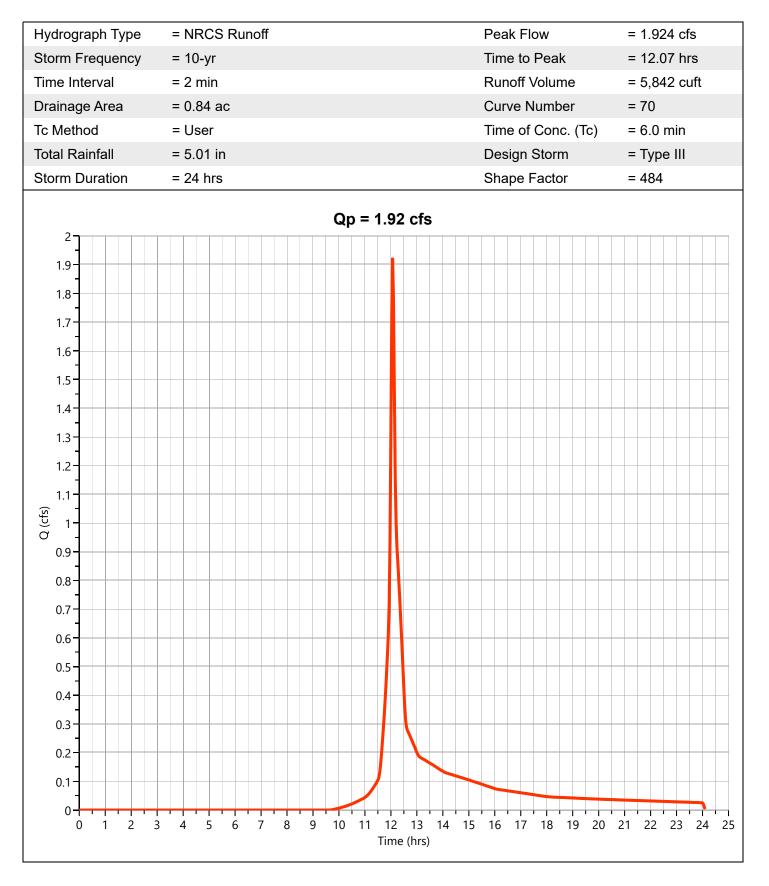
4.27


=

0.83

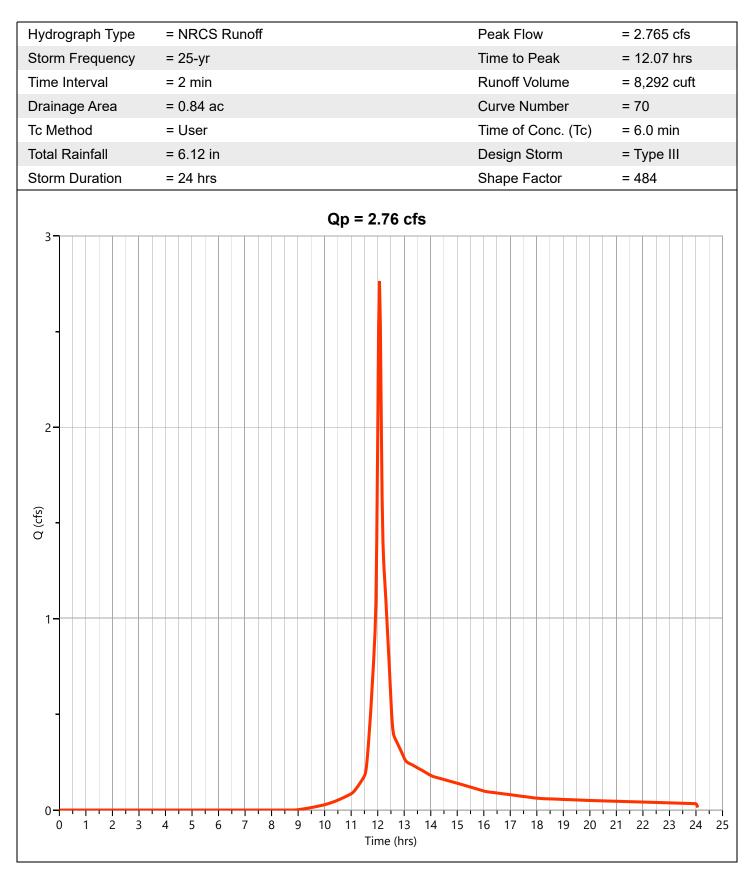
Hydrology Studio v 3.0.0.29

Subcatchment P-2A


12-13-2023

Hydrology Studio v 3.0.0.29

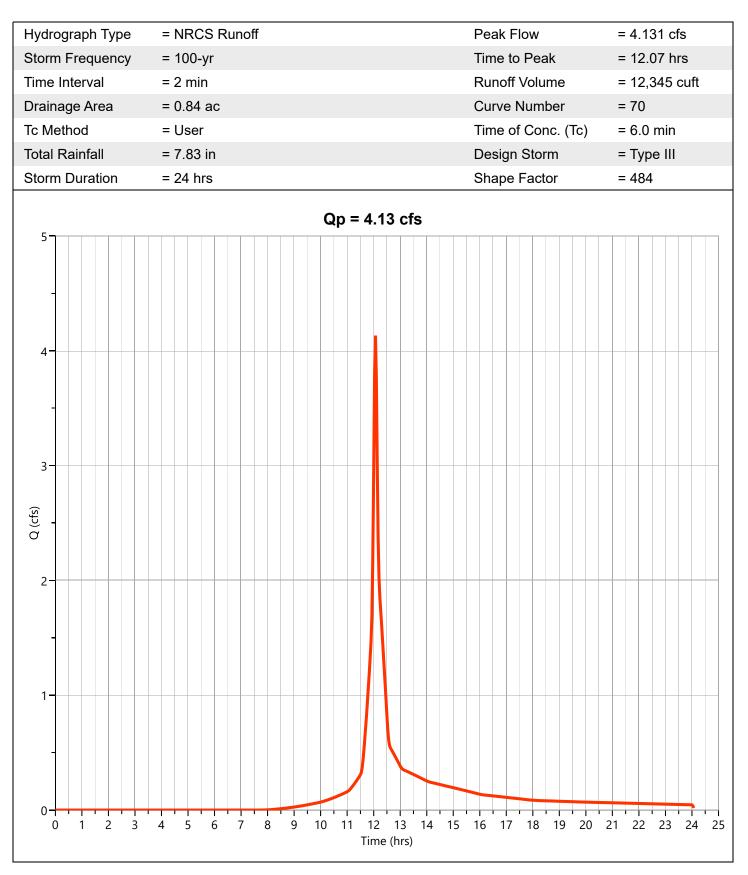
Subcatchment P-2A


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-2A

12-13-2023

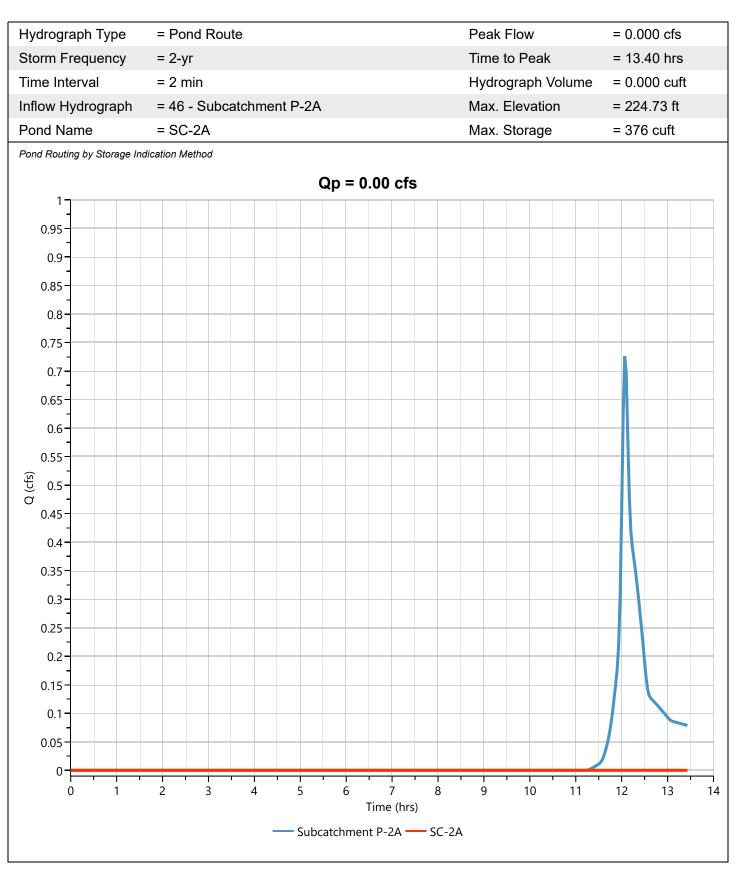


Hydrology Studio v 3.0.0.29

Subcatchment P-2A

12-13-2023

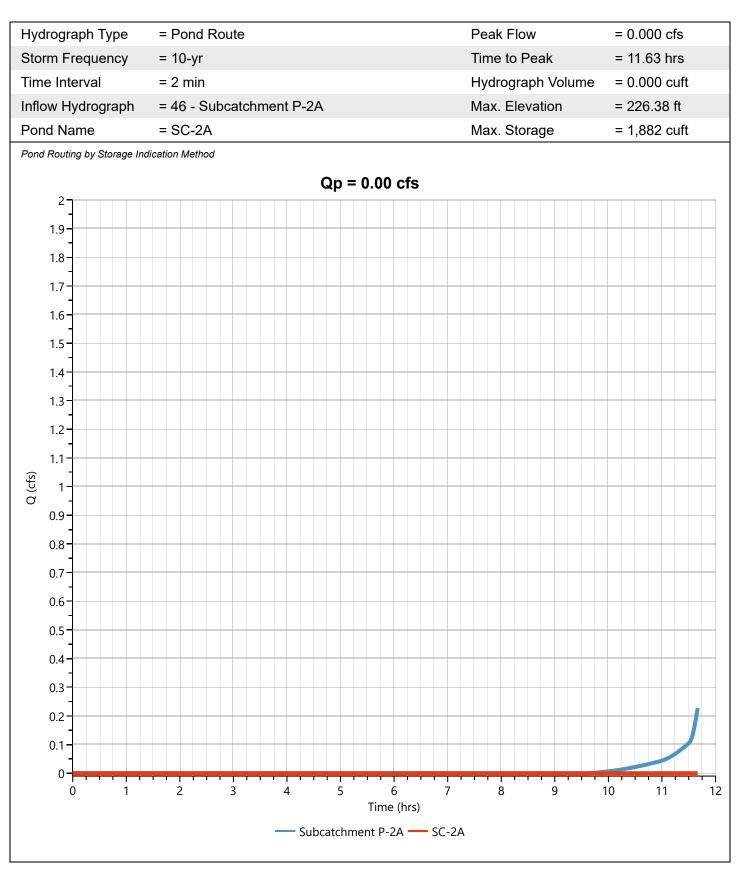
Project Name:



Hydrology Studio v 3.0.0.29

SC-2A

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

SC-2A

12-13-2023

Hydrology Studio v 3.0.0.29

SC-2A

Project Name:

12-13-2023

Hydrograph Type	= Pond Route		Peak Flow	= 0.000 cfs
Storm Frequency	= 25-yr		Time to Peak	= 10.87 hrs
Time Interval	= 2 min		Hydrograph Volume	= 0.000 cuft
Inflow Hydrograph	= 46 - Subcatchment P-2A	4	Max. Elevation	= 227.92 ft
Pond Name	= SC-2A		Max. Storage	= 3,165 cuft
Pond Routing by Storage I	dication Method			
		Qp = 0.00 cfs		
3				
2				
^(s) ₂ 1- σ				
Q				
0-				
-1	2 3 4	5 6	7 8 9) 10 11
0 1	2 5 4	5 6 Time (hrs)	, 0 9	' IU II
	Sub	catchment P-2A — SC-2	A	

Hydrology Studio v 3.0.0.29

SC-2A

Project Name:

12-13-2023

ydrograph Type	= Pond Route	Peak Flow	= 1.275 cfs
torm Frequency	= 100-yr	Time to Peak	= 12.33 hrs
me Interval	= 2 min	Hydrograph Volum	
flow Hydrograph	= 46 - Subcatchment P-2A	Max. Elevation	= 229.35 ft
ond Name	= SC-2A	Max. Storage	= 3,958 cuft
ond Routing by Storage Ind	lication Method		
_	Qp =	1.28 cfs	
5			
4-			
3-			
5			
2			
x			
1			
0-			
-1			
0 1 2		7 8 9 10 11 1. Time (hrs)	2 13 14

Hydrology Studio v 3.0.0.29

SC-2A

12-13-2023

Stage-Storage

StormTech® MC-3500™ C	hamber			Stage / Stora	ige Table	
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Chamber Height, in	45	0.0	224.00	1,217	0.000	0.000
Chamber Shape	Arch	3.3	224.00	1,217	134	134
Chamber Width, in	77	6.6	224.55	1,217	134	268
		9.9	224.83	1,217	166	434
Installed Length, ft	7.17	13.2	225.10	1,217	260	694
No. Chambers	20	16.5	225.38	1,217	259	954
Bare Chamber Stor, cuft	2,198	19.8	225.65	1,217	258	1,211
		23.1 26.4	225.93 226.20	1,217	255 252	1,467 1,719
No. Rows	2	20.4	226.20	1,217 1,217	232	1,719
Space Between Rows, in	9	33.0	226.75	1,217	244	2,211
Stone Above, in	12	36.3	227.03	1,217	238	2,449
		39.6	227.30	1,217	231	2,679
Stone Below, in	9	42.9	227.58	1,217	222	2,901
Stone Sides, in	12	46.2	227.85	1,217	211	3,113
Stone Ends, in	12	49.5	228.13	1,217	197	3,310
		52.8	228.40	1,217	177	3,488
Encasement Voids, %	40.00	56.1	228.68	1,217	145	3,633
Encasement Bottom Elevation, ft	224.00	59.4 62.7	228.95 229.23	1,217 1,217	134 134	3,767 3,900
		66.0	229.50	1,217	134	4,034
230			Storage			6
228						4
_						
227						
227						3
227-						3

Total Storage (cuft) ----- UG Chambers ----- Top of Pond ----- Top of Chamber ----- Invert of Chamber ----- Top Stone ----- Bottom Stone

Hydrology Studio v 3.0.0.29

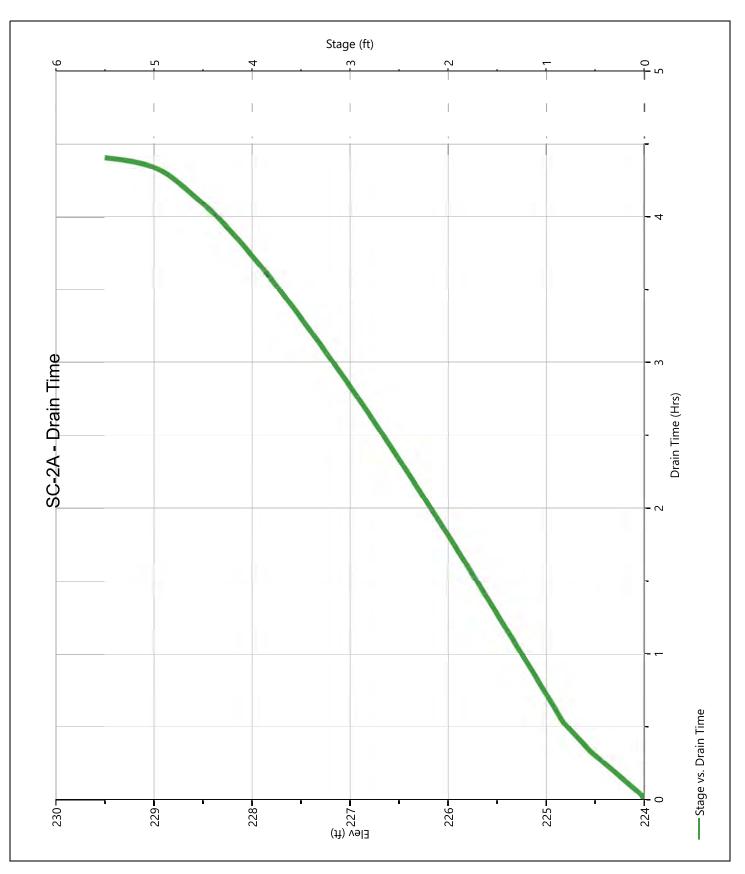
SC-2A

12-13-2023

Stage-Discharge Perforated Riser

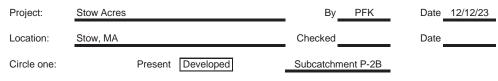
Hydrology Studio v 3.0.0.29

SC-2A


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	C	Drifices, cf	S	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	224.00	0.000	0.000									0.000		0.000
0.28	224.28	134	0.000									0.234		0.234
0.55	224.55	268	0.000									0.235		0.235
0.83	224.83	434	0.000									0.236		0.236
1.10	225.10	694	0.000									0.237		0.237
1.38	225.38	954	0.000									0.238		0.238
1.65	225.65	1,211	0.000									0.239		0.239
1.93	225.93	1,467	0.000									0.240		0.240
2.20	226.20	1,719	0.000									0.241		0.241
2.48	226.48	1,967	0.000									0.242		0.242
2.75	226.75	2,211	0.000									0.243		0.243
3.03	227.03	2,449	0.000									0.244		0.244
3.30	227.30	2,679	0.000									0.245		0.245
3.58	227.58	2,901	0.000									0.246		0.246
3.85	227.85	3,113	0.000									0.247		0.247
4.13	228.13	3,310	0.000									0.248		0.248
4.40	228.40	3,488	0.000									0.249		0.249
4.68	228.68	3,633	0.000									0.250		0.250
4.95	228.95	3,767	0.171 ic									0.251		0.422
5.23	229.23	3,900	0.864 ic									0.252		1.116
5.50	229.50	4,034	1.864 ic									0.253		2.117

Hydrology Studio v 3.0.0.29


SC-2A

Pond Drawdown

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
	Impervious	98			0.06	5.93
A	Woods - Good Condition	30			0.65	19.42
А	Open Space - Good Condition	39			1.80	70.13
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one (CN source per line.			Totals =	2.51	95.48

95.48

2.51

Storm #2

10

5.01 0.17 =

Storm #3

100

7.83

1.01

=

Storm #1

2

3.23

0.00

CN (weighted) = tota

hted) = total product total area 38.10;

Use CN =

38

2. Runoff

 Frequency......
 yr

 Rainfall, P (24-hour)......
 in

 Runoff, Q......
 in

 (Use P and CN with table 2-1, fig. 2-1,)
 or eqs. 2-3 and 2-4.)

	Worksheet 3: Time of Concentra	ation (Tc) or trav	el time (Tt)		SM-6	5781
Project:	Stow Acres		Ву	PFK	Date 12/1	2/2023
Location:	Stow, MA		Checked		Date	
Circle one: Circle one:	Present Develop Tc Tt	ped through subarea	Subcatch	ment P-2B		
Sheet flow	(Applicable to Tc only)		Segment ID	A-B		
1. Surface	Description (table 3-1)			LAWN		
2. Manning	s roughness coeff., n (table 3-1)			0.24		
3. Flow leng	gth, L (total L <= 300 ft)		ft	50		
4. Two-yr 2	4-hr rainfall, P2		in	3.1		
5. Land Slo	pe, s		ft/ft	0.020		
6. Tt = 0.00	7 (nL)^0.8 / (P2^0.5 s^0.4)	Compute T	't hr	0.14		0.14
Shallow co	ncentrated Flow		Segment ID	B-C		
7. Surface	Description (paved or unpaved)			UNPAVED		
8. Flow Ler	ngth, L		ft	144		
9. Waterco	urse slope, s		ft/ft	0.06		
10. Average	e Velocity, V (figure 3-1)		ft/s	3.95		
11. Tt = L /	3600V	Compute T	't hr	0.01		0.01
Channel flo	w		Segment ID			
 13. Wetted 14. Hydrau 15. Channe 16. Mannin 	g's roughness coeff., n	Compute r	ft/ft			
17. V = 1.4 18. Flow let	9 r^2/3 s^1/2 / n	Compute V	ft/s			
19. Tt = L /	-	Compute T				0
20. Waters	hed or subarea Tc or Tt (add Tt in	i steps 6, 11, an	id 19)		hr min	0.15 8.9

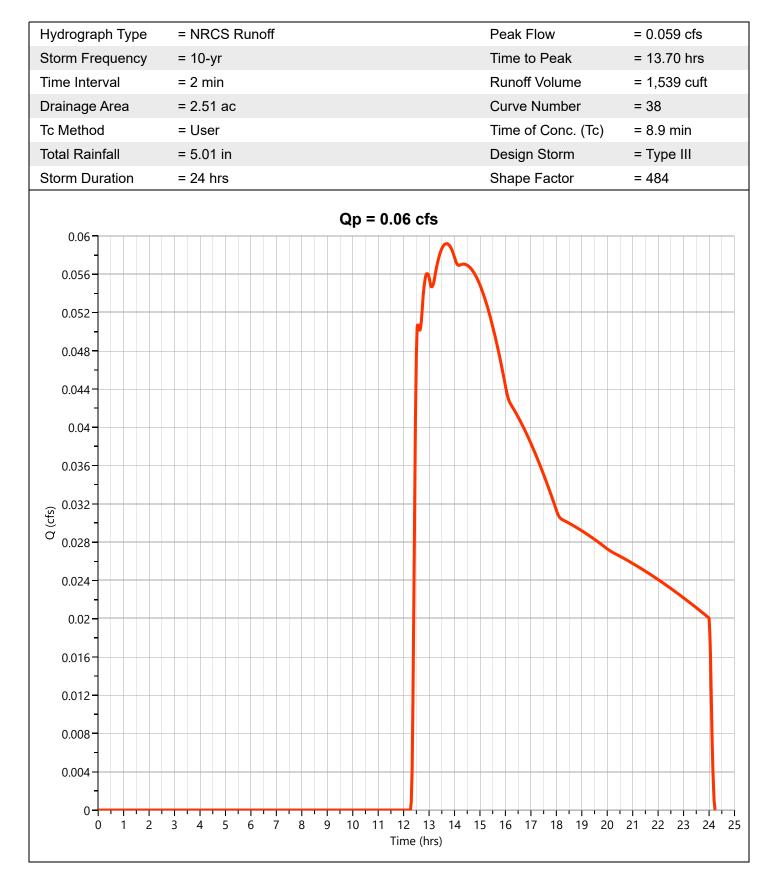
(210-VI-TR-55, Second Ed., June 1986)

D-3

Hydrology Studio v 3.0.0.29

Subcatchment P-2B

Hyd. No. 48

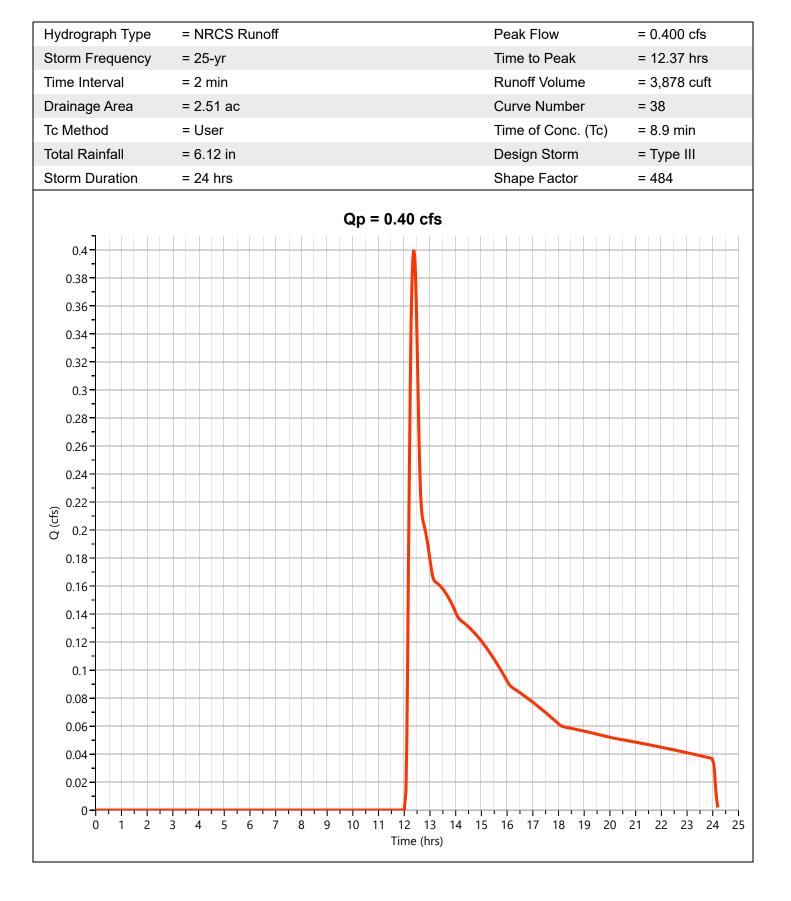

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 2.51 ac	Curve Number	= 38
Tc Method	= User	Time of Conc. (Tc)	= 8.9 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

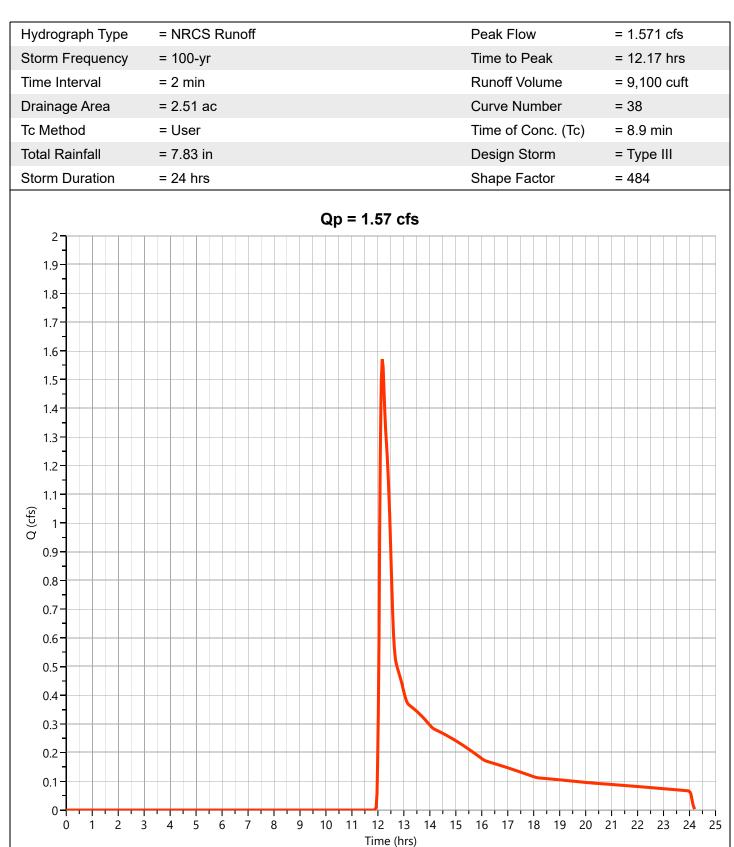
Subcatchment P-2B

12-13-2023



Hydrology Studio v 3.0.0.29

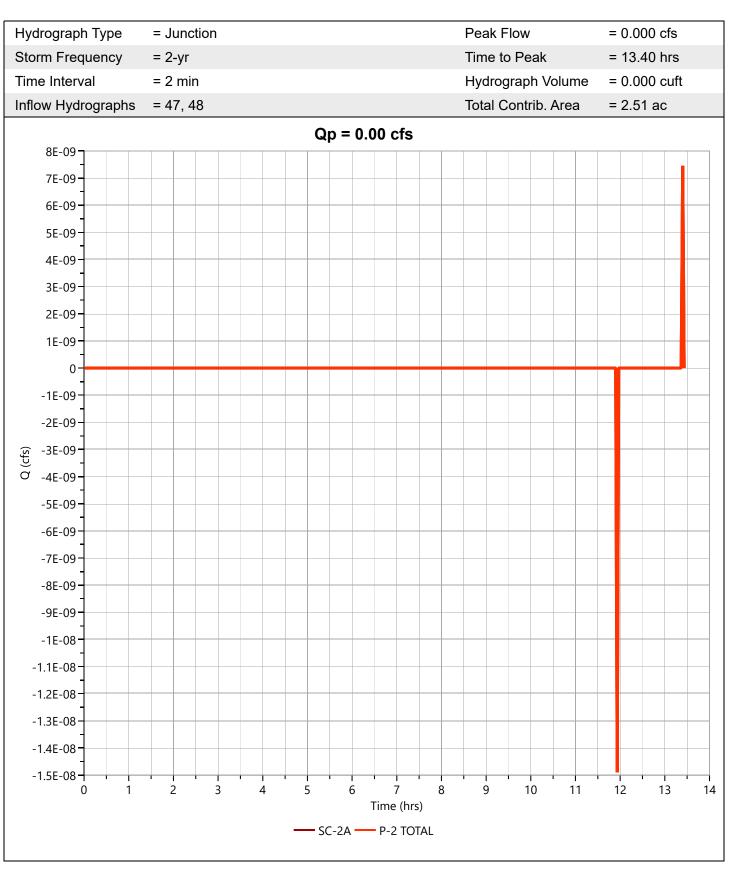
Subcatchment P-2B



Hyd. No. 48

Hydrology Studio v 3.0.0.29

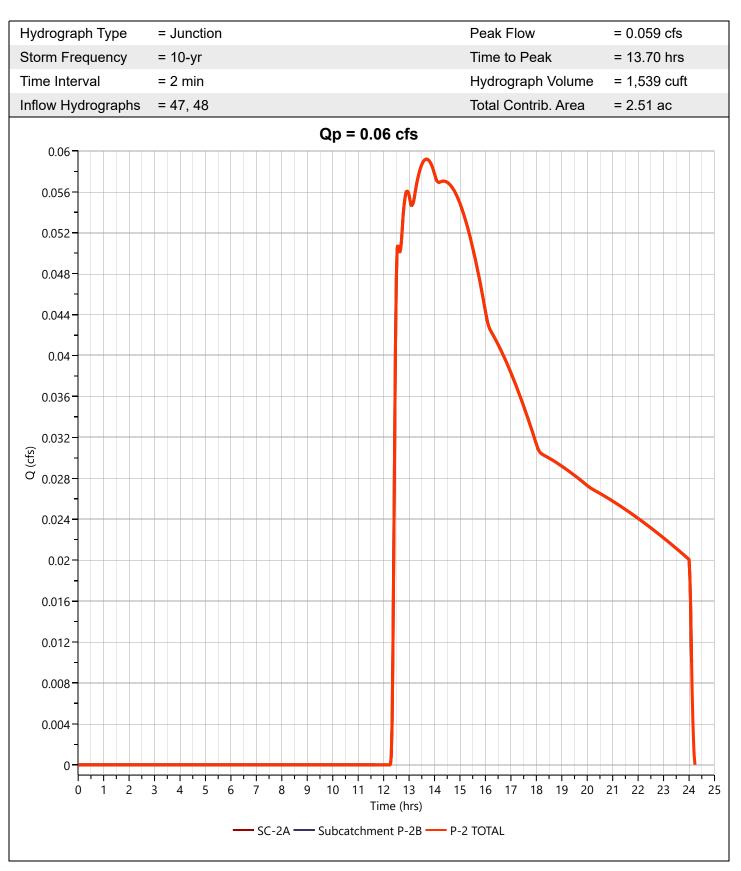
Subcatchment P-2B



Hyd. No. 48

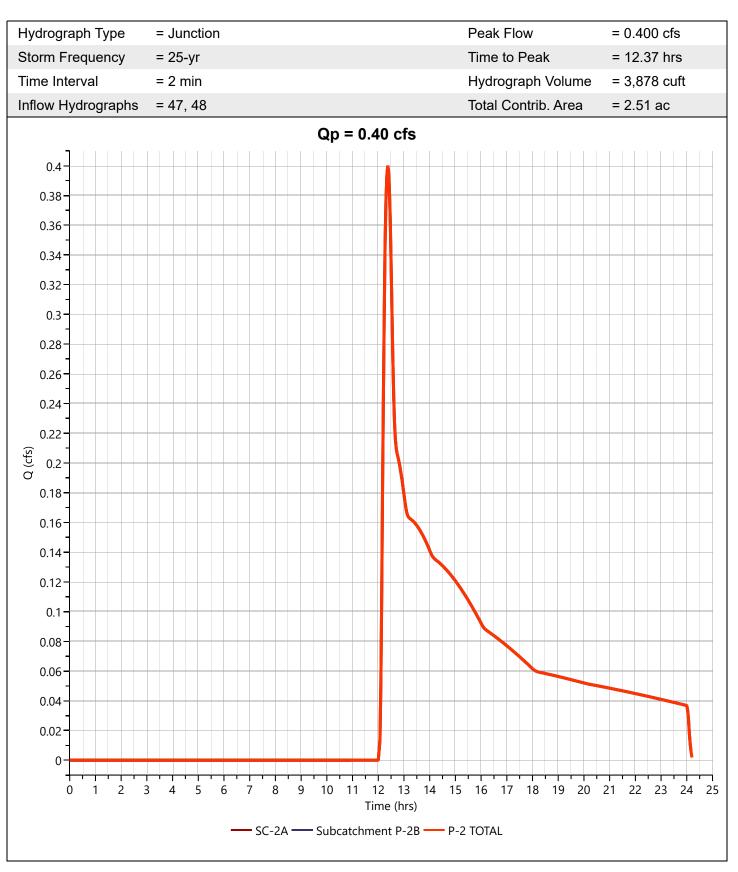
Hydrology Studio v 3.0.0.29

P-2 TOTAL


12-13-2023

Hydrology Studio v 3.0.0.29

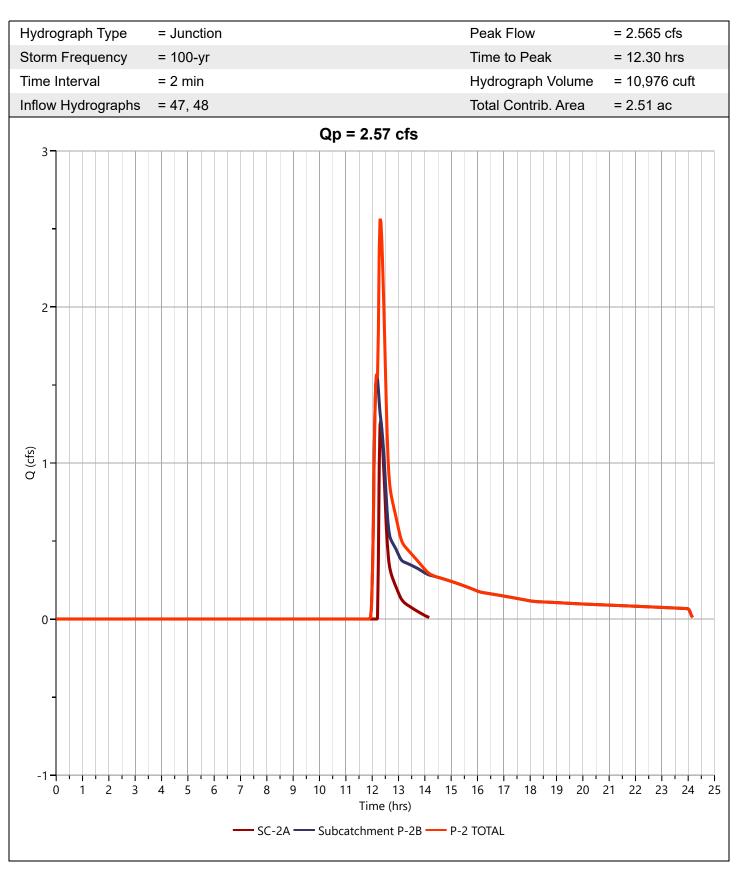
P-2 TOTAL


12-13-2023

Hydrology Studio v 3.0.0.29

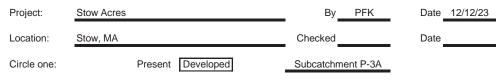
P-2 TOTAL

12-13-2023



Hydrology Studio v 3.0.0.29

P-2 TOTAL



Project Name:

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			1.34	130.87
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			1.54	59.94
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	N source per line.			Totals =	2.87	190.80

1<u>90.80</u> =

Storm #3

100

7.83

3.92

2.87

Storm #2

10

5.01

1.77

=

Storm #1

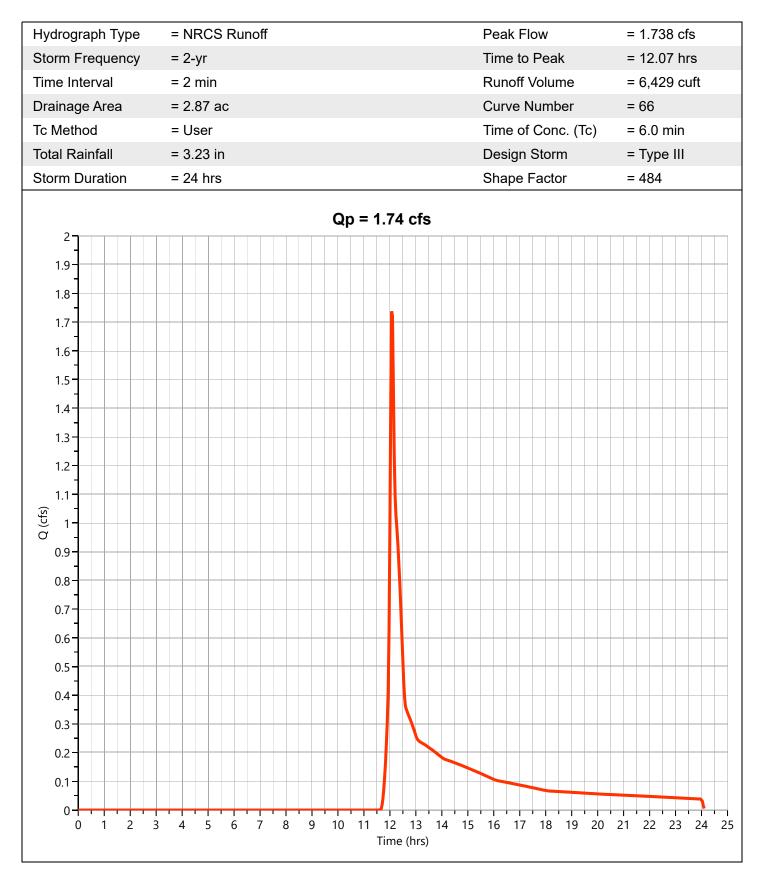
2 3.23

0.68

66.43 ;

Use CN =

66

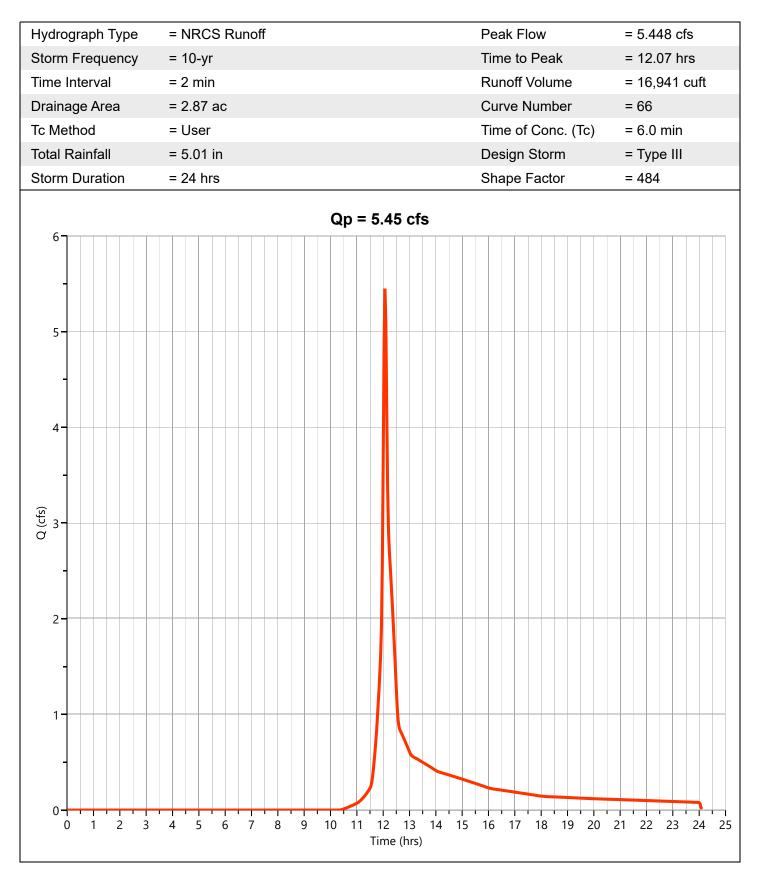

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Hydrology Studio v 3.0.0.29

Subcatchment P-3A

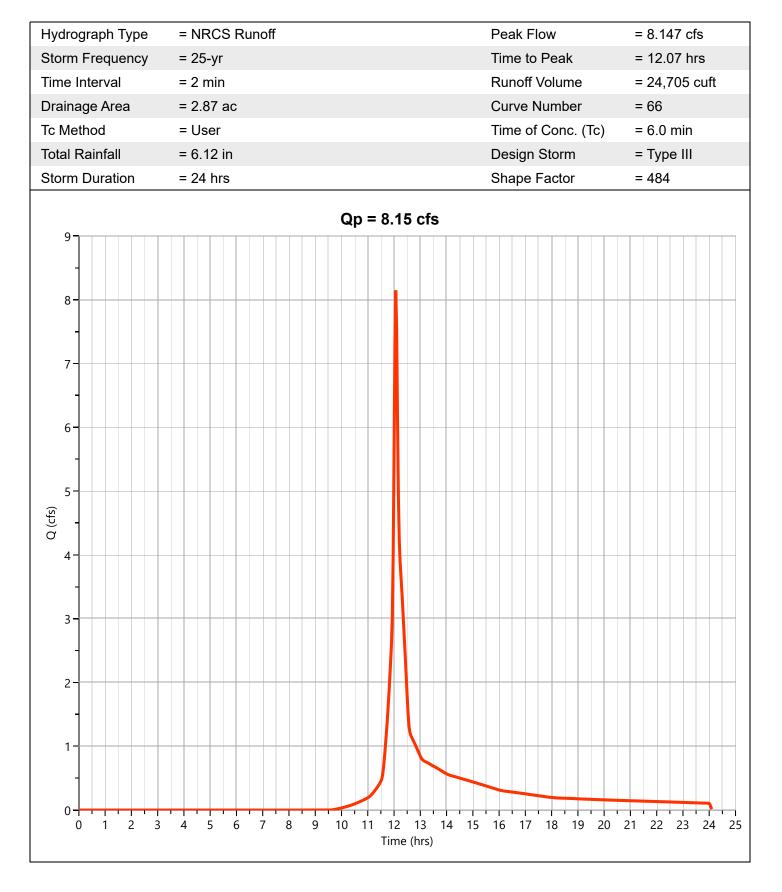
Hyd. No. 51



Hydrology Studio v 3.0.0.29

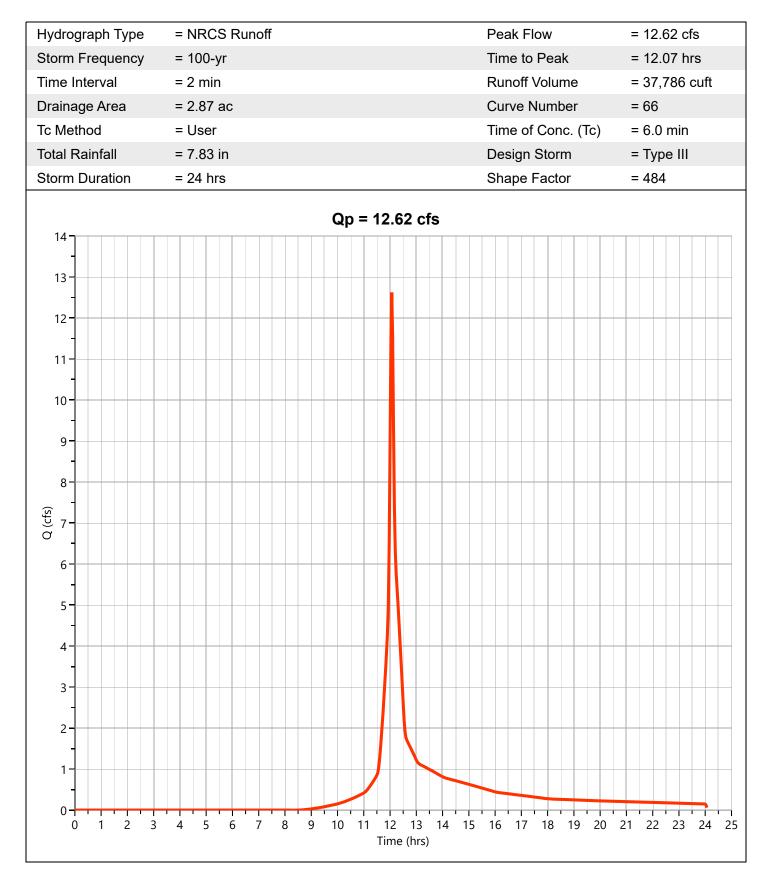
Subcatchment P-3A

12-13-2023


Project Name:

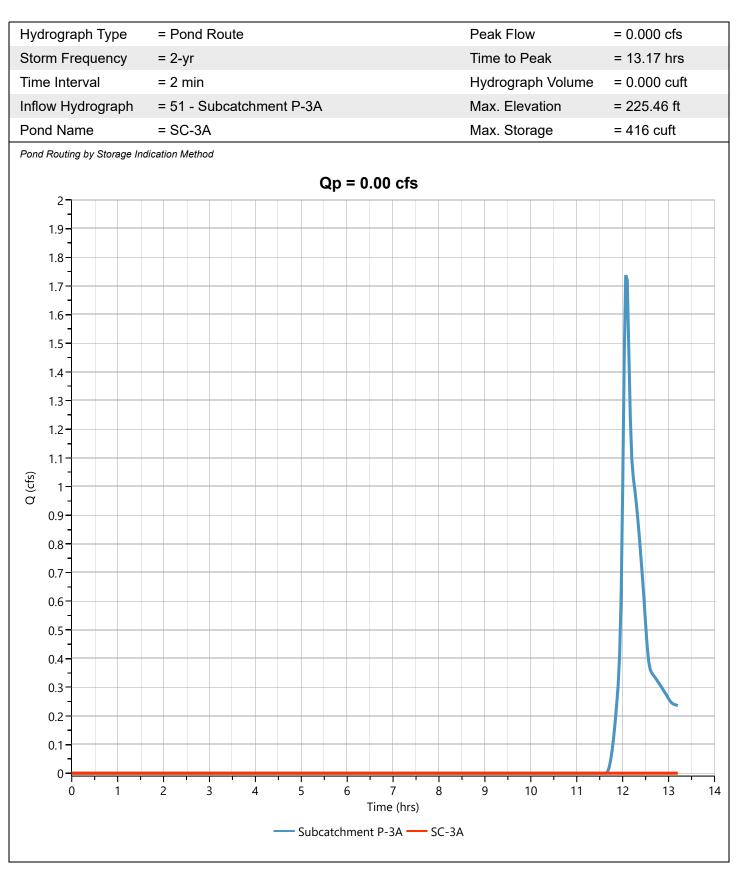
Hydrology Studio v 3.0.0.29

Subcatchment P-3A


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-3A


12-13-2023

Hydrology Studio v 3.0.0.29

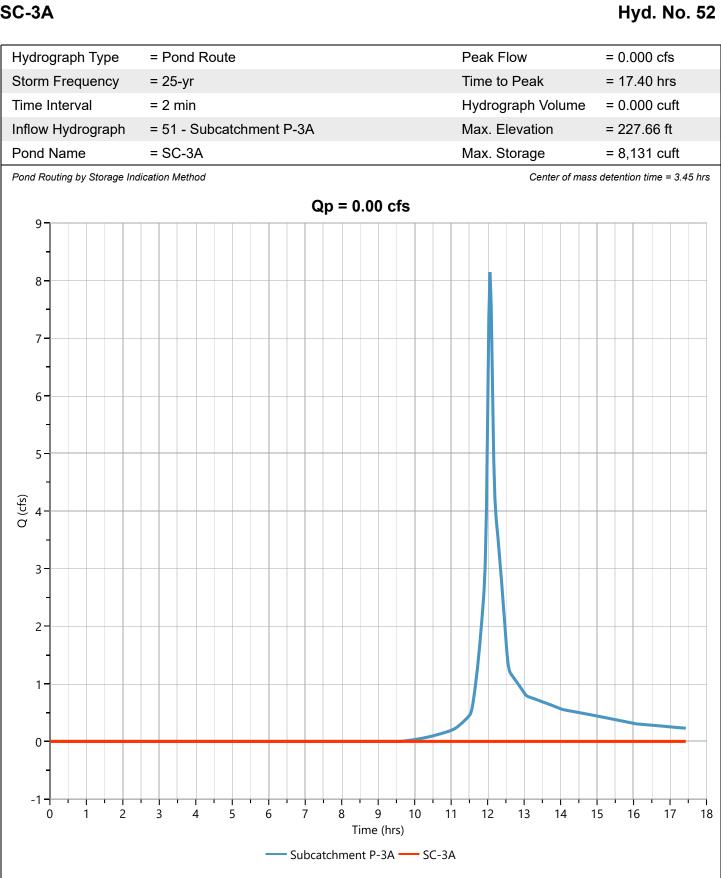
SC-3A

12-13-2023

Hydrology Studio v 3.0.0.29

SC-3A

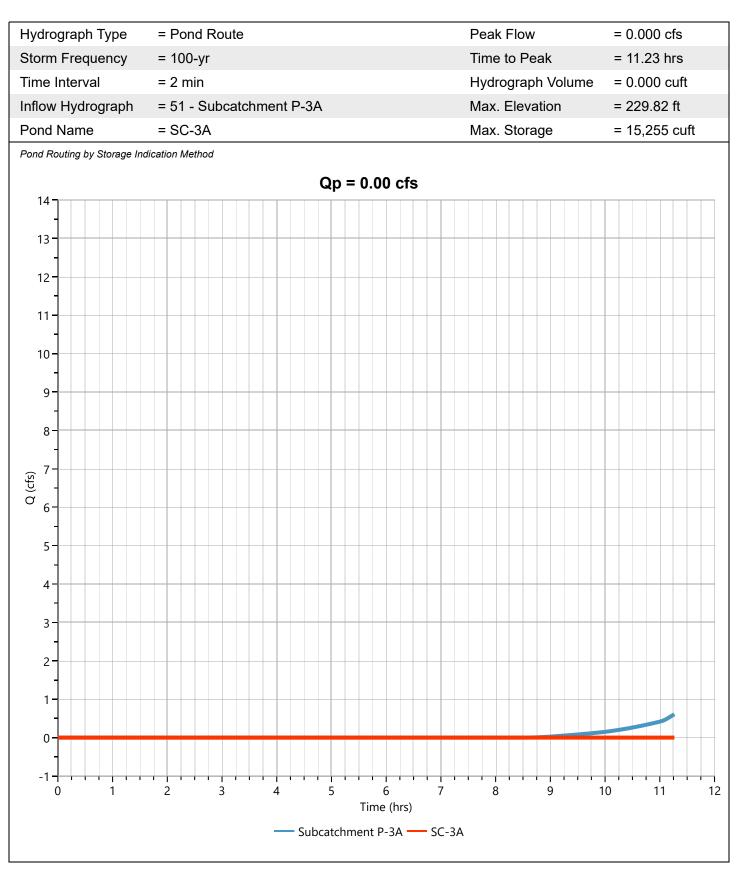
Project Name:


12-13-2023

ydrograph Type	= Pond Route			Peak Flow	= 0.000 cfs
torm Frequency	= 10-yr			Time to Peak	= 11.77 hrs
me Interval	= 2 min			Hydrograph Volur	
flow Hydrograph	= 51 - Subcatch	ment P-3A		Max. Elevation	= 226.72 ft
ond Name	= SC-3A			Max. Storage	= 4,404 cuft
nd Routing by Storage In	dication Metriod				
67		Qp = 0	00 cfs		
-					
5					
4					
-					
3-					
2-					
1-					
0-					
-					
-1 4 - 1 +	2 3	4 5	6 7	8 9	10 11
		Ti	ne (hrs)		

Hydrology Studio v 3.0.0.29

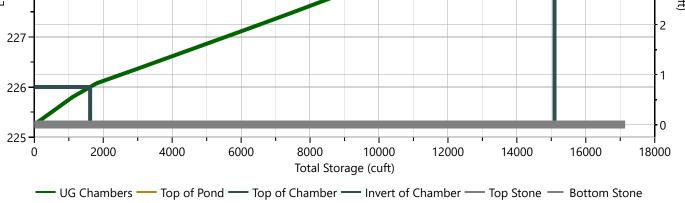
SC-3A


Project Name:

Hydrology Studio v 3.0.0.29

SC-3A

12-13-2023


Hydrology Studio v 3.0.0.29

SC-3A

12-13-2023

Stage-Storage

Description Input Stage (n) Elevation (t) Contour Area (sqft) Incr. Storage (cuft) Total Storag (cuft) Chamber Height, in 45 0.0 225.25 5.043 0.000 0.000 Chamber Shape Arch 3.3 225.53 5.043 555 555 Chamber Width, in 77 6.6 225.80 5.043 700 1.809 Installed Length, ft 7.17 13.2 226.35 5.043 1.117 2.927 No. Chambers 90 16.5 226.63 5.043 1.114 4.040 Bare Chamber Stor, cuft 9.891 23.1 227.73 5.043 1.096 6.243 No. Rows 6 26.4 227.45 5.043 1.083 7.326 Stone Above, in 9 33.0 228.00 5.043 1.044 9.435 Stone Above, in 12 36.3 228.28 5.043 9.00 13.286 Stone Sides, in 12 46.2 229.10 <t< th=""><th>StormTech® MC-3500™ Ch</th><th>namber</th><th></th><th></th><th>Stage / Stora</th><th>ge Table</th><th></th></t<>	StormTech® MC-3500™ Ch	namber			Stage / Stora	ge Table	
Chamber Height, in 45 11 11 11 11 11 11 Chamber Shape Arch 3.3 225.53 5,043 0.000 0.000 Chamber Width, in 77 6.6 225.80 5,043 555 1,109 Installed Length, ft 7.17 13.2 226.08 5,043 700 1,809 No. Chambers 90 16.5 226.63 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,114 4,040 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,083 7,326 Space Between Rows, in 9 33.0 228.00 5,043 1,044 9,435 Stone Below, in 9 42.9 228.83 5,043 900	Description	Input					Total Storag (cuft)
Chamber ShapeArch3.3225.535.043555555Chamber Width, in776.6225.805.0435551.1099.99.9226.085.0437001.809Installed Length, ft7.1713.2226.355.0431.1172.927No. Chambers9016.5226.635.0431.1144.040Bare Chamber Stor, cuft9,89123.1227.185.0431.0066.243No. Rows626.4227.455.0431.0858.391Space Between Rows, in933.0228.005.0431.0449.435Stone Above, in1236.3228.285.0431.01810.453Stone Below, in942.9228.835.0439.6611.439Stone Ends, in1246.2229.105.0439.4812.366Stone Ends, in1252.8229.385.0439.4814.874Encasement Voids, %40.0056.1229.935.04360415.477Encasement Bottom Elevation, ft225.2562.7230.485.04355516.58766.0230.755.04355516.58716.58750.4355516.5875.04355516.58750.4450.4355516.5875.04355516.58750.5050.4355516.5875.04355516.58750.5050.43555	Chamber Height, in	45					
Chamber Width, in 77 6.6 225.80 5,043 555 1,109 Installed Length, ft 7.17 13.2 226.08 5,043 700 1,809 Installed Length, ft 7.17 13.2 226.35 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,114 4,040 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,096 6,243 No. Rows 6 26.4 227.45 5,043 1,083 7,326 Space Between Rows, in 9 33.0 228.00 5,043 1,044 9,435 Stone Above, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.83 5,043 986 11,439 Stone Sides, in 12 46.2 229.10 5,043 986 11,439 Stone Ends, in 12 52.8 229.38 5,043 938	Chamber Shape	Arch					
Chamber Width, in Prime 9.9 226.08 5,043 700 1,809 Installed Length, ft 7.17 13.2 226.35 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,114 4,040 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,107 5,147 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,096 6,243 No. Rows 6 26.4 227.45 5,043 1,083 7,326 Space Between Rows, in 9 33.0 228.00 5,043 1,044 9,435 Stone Above, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.83 5,043 900 13,226 Stone Sides, in 12 46.2 229.10 5,043 900 13,226 Stone Ends, in 12 52.8 229.38 5,043 604	· · · ·				,		
Installed Length, ft 7.17 13.2 226.35 5,043 1,117 2,927 No. Chambers 90 16.5 226.63 5,043 1,114 4,040 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,107 5,147 Bare Chamber Stor, cuft 9,891 23.1 227.18 5,043 1,096 6,243 No. Rows 6 26.4 227.45 5,043 1,083 7,326 Space Between Rows, in 9 33.0 228.00 5,043 1,044 9,435 Stone Above, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.83 5,043 986 11,439 Stone Sides, in 12 46.2 229.10 5,043 948 12,386 Stone Ends, in 12 46.2 229.10 5,043 838 14,125 Stone Ends, in 12 52.8 229.38 5,043 604	Champer Width, In	11					
Here Grambers5.019.8226.905,0431,1075,147Bare Chamber Stor, cuft9,89123.1227.185,0431,0966,243No. Rows626.4227.455,0431,0837,326Space Between Rows, in933.0228.005,0431,0449,435Stone Above, in1236.3228.285,0431,01810,453Stone Below, in942.9228.835,04398611,439Stone Sides, in1246.2229.105,04394812,386Stone Ends, in1252.8229.385,04383814,125Stone Ends, in1256.1229.385,04360415,477Encasement Voids, %40.0056.1229.335,04355516,032Encasement Bottom Elevation, ft225.2562.7230.485,04355516,687Encasement Bottom Elevation, ft225.2560.0230.755,04355517,142	Installed Length, ft	7.17					
Bare Chamber Stor, cuft9,89119.8226.905,0431,1075,147No. Rows623.1227.185,0431,0966,243No. Rows626.4227.455,0431,0837,326Space Between Rows, in933.0228.005,0431,0449,435Stone Above, in1236.3228.285,0431,01810,453Stone Below, in942.9228.835,04398611,439Stone Below, in942.9228.835,04394812,386Stone Sides, in1246.2229.105,04390013,286Stone Ends, in1252.8229.655,04360414,474Encasement Voids, %40.0056.1229.935,04360415,477Encasement Bottom Elevation, ft225.2562.7230.485,04355516,63266.0230.755,04355511,14255511,142	No. Chambers	90	16.5	226.63	5,043	1,114	4,040
No. Rows 6 26.4 227.45 5,043 1,055 6,7326 Space Between Rows, in 9 33.0 228.00 5,043 1,065 8,391 Stone Above, in 12 36.3 228.28 5,043 1,044 9,435 Stone Above, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.55 5,043 986 11,439 Stone Sides, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 52.8 229.38 5,043 838 14,125 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 Encasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,032 Encasement Bottom Elevation, ft 225.25 62.7 230.48 5,043			19.8	226.90	5,043	1,107	5,147
Normal Space Between Rows, in929.7227.735,0431,0658,391Space Between Rows, in933.0228.005,0431,0449,435Stone Above, in1236.3228.285,0431,01810,453Stone Below, in942.9228.835,04398611,439Stone Sides, in1246.2229.105,04394812,386Stone Ends, in1246.2229.105,04383814,125Stone Ends, in1252.8229.655,04383814,125Encasement Voids, %40.0056.1229.935,04360415,477Encasement Bottom Elevation, ft225.2562.7230.485,04355516,68766.0230.755,04355516,58717,14214,125	Bare Chamber Stor, cuft	9,891	23.1	227.18	5,043	1,096	6,243
Space Between Rows, in 9 33.0 228.00 5,043 1,044 9,435 Stone Above, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.55 5,043 986 11,439 Stone Below, in 9 42.9 228.83 5,043 948 12,386 Stone Sides, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 46.2 229.38 5,043 838 14,125 Stone Ends, in 12 52.8 229.65 5,043 604 15,477 Encasement Voids, % 40.00 56.1 229.93 5,043 555 16,032 Encasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,587 66.0 230.75 5,043 555 16,587 17,142	No. Rows	6			5,043	1,083	7,326
Stone Above, in 12 36.3 228.28 5,043 1,044 3,433 Stone Below, in 12 36.3 228.28 5,043 1,018 10,453 Stone Below, in 9 42.9 228.83 5,043 986 11,439 Stone Sides, in 12 46.2 229.10 5,043 948 12,386 Stone Ends, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 52.8 229.65 5,043 838 14,125 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 59.4 230.20 5,043 555 16,032 Encasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,587 66.0 230.75 5,043 555 16,587	Space Potween Power in	0					-
Stone Below, in 9 39.6 228.55 5,043 986 11,439 Stone Below, in 9 42.9 228.83 5,043 948 12,386 Stone Sides, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 46.2 229.38 5,043 838 14,125 Stone Ends, in 12 52.8 229.65 5,043 604 15,477 Encasement Voids, % 40.00 56.1 229.93 5,043 555 16,032 ncasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,587 66.0 230.75 5,043 555 16,587 17,142 17,142	Space between Rows, in	9					-
Stone Below, in 9 42.9 228.83 5,043 948 12,386 Stone Sides, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 46.2 229.38 5,043 838 14,125 Stone Ends, in 12 52.8 229.65 5,043 749 14,874 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 ncasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,032 66.0 230.75 5,043 555 16,587	Stone Above, in	12			,	,	
Stone Sides, in 12 46.2 229.83 5,043 948 12,388 Stone Ends, in 12 46.2 229.10 5,043 900 13,286 Stone Ends, in 12 52.8 229.38 5,043 838 14,125 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 Incasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,587 66.0 230.75 5,043 555 16,587	Stone Below, in	9					
Stone Ends, in 12 49.5 229.38 5,043 838 14,125 Stone Ends, in 12 52.8 229.65 5,043 749 14,874 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 incasement Bottom Elevation, ft 225.25 62.7 230.48 5,043 555 16,032 66.0 230.75 5,043 555 16,587					,		
Stone Ends, in 12 52.8 229.65 5,043 749 14,874 Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 Encasement Bottom Elevation, ft 225.25 62.7 230.20 5,043 555 16,032 Encasement Bottom Elevation, ft 225.25 66.0 230.75 5,043 555 16,587	Stone Sides, in	12					
Encasement Voids, % 40.00 56.1 229.93 5,043 604 15,477 Incasement Bottom Elevation, ft 225.25 59.4 230.20 5,043 555 16,032 62.7 230.48 5,043 555 16,587 66.0 230.75 5,043 555 17,142	Stone Ends, in	12					
Incasement Bottom Elevation, ft 225.25 59.4 230.20 5,043 555 16,032 66.0 230.75 5,043 555 16,587	Encasement Voids %	40.00					
66.0 230.75 5,043 555 17,142							
	ncasement Bottom Elevation, ft	225.25	62.7	230.48	5,043	555	16,587
Stage-Storage			66.0	230.75	5,043	555	17,142
237							
	30-						
230-							4
	229						
	28						
230							l F

Hydrology Studio v 3.0.0.29

SC-3A

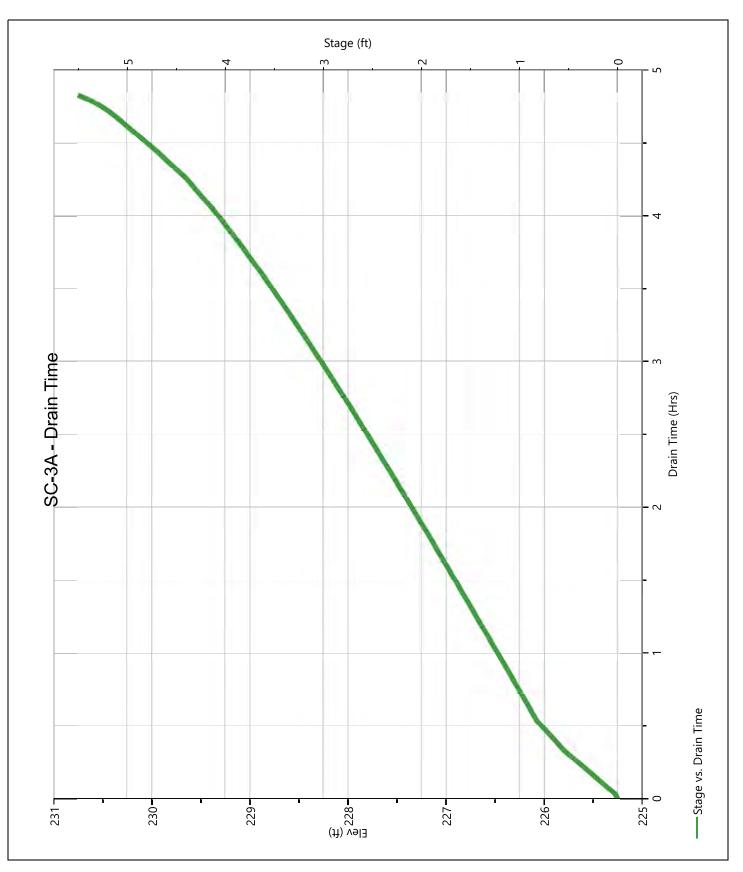
12-13-2023

Stage-Discharge

Outrast / Outfines	Orcharact		Orifices		Devferente d Die er			
Culvert / Orifices	Culvert	1	1 2 3		Perforated Ris	er		
Rise, in	18				Hole Diameter, in			
Span, in	18				No. holes			
No. Barrels	1				Invert Elevation, ft			
Invert Elevation, ft	230.25				Height, ft			
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co			
Length, ft	50							
Barrel Slope, %	2							
N-Value, n	0.012							
Weirs	Riser*	Weirs			Anoillen			
wens	Risei	1 2 3		3	Ancillary			
Shape / Type					Exfiltration, in/hr	8.27**		
Crest Elevation, ft								
Crest Length, ft								
Angle, deg								
Weir Coefficient, Cw								
		Stage-D	ischarge					
230-						• 5		
-								
229-						•4		
						Sta		
€ ≥228-						Stage (ft)		
-						2		
227-						ŀ		
226-						1		
-								
0	1	Disch	arge (cfs)	2	1			
	— Top of		lvert <u> </u>	Total Q				
	— Top of	Pond — Cu	Ivert — Exfil	— Iotal Q				

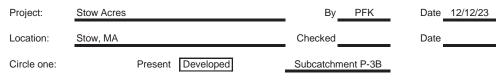
Hydrology Studio v 3.0.0.29

SC-3A


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert (cfs)	Orifices, cfs		Riser		Weirs, cfs			Exfil	User	Total	
(ft)	(ft) (ft)	(cuft)		1	2	3	(cfs)	1	2	3	Pf Riser (cfs)	(cfs)	(cfs)	(cfs)
0.00	225.25	0.000	0.000									0.000		0.000
0.28	225.53	555	0.000									0.966		0.966
0.55	225.80	1,109	0.000									0.967		0.967
0.83	226.08	1,809	0.000									0.968		0.968
1.10	226.35	2,927	0.000									0.969		0.969
1.38	226.63	4,040	0.000									0.970		0.970
1.65	226.90	5,147	0.000									0.971		0.971
1.93	227.18	6,243	0.000									0.972		0.972
2.20	227.45	7,326	0.000									0.973		0.973
2.48	227.73	8,391	0.000									0.974		0.974
2.75	228.00	9,435	0.000									0.975		0.975
3.03	228.28	10,453	0.000									0.976		0.976
3.30	228.55	11,439	0.000									0.977		0.977
3.58	228.83	12,386	0.000									0.978		0.978
3.85	229.10	13,286	0.000									0.979		0.979
4.13	229.38	14,125	0.000									0.980		0.980
4.40	229.65	14,874	0.000									0.981		0.981
4.68	229.93	15,477	0.000									0.982		0.982
4.95	230.20	16,032	0.000									0.983		0.983
5.23	230.48	16,587	0.269 ic									0.984		1.254
5.50	230.75	17,142	1.243 ic									0.985		2.228
														ł

Hydrology Studio v 3.0.0.29


SC-3A

Pond Drawdown

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
	Impervious	98			1.00	98.38
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			1.05	41.14
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN source per line.					2.06	139.52

67.7<u>7</u>;

Use CN =

68

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

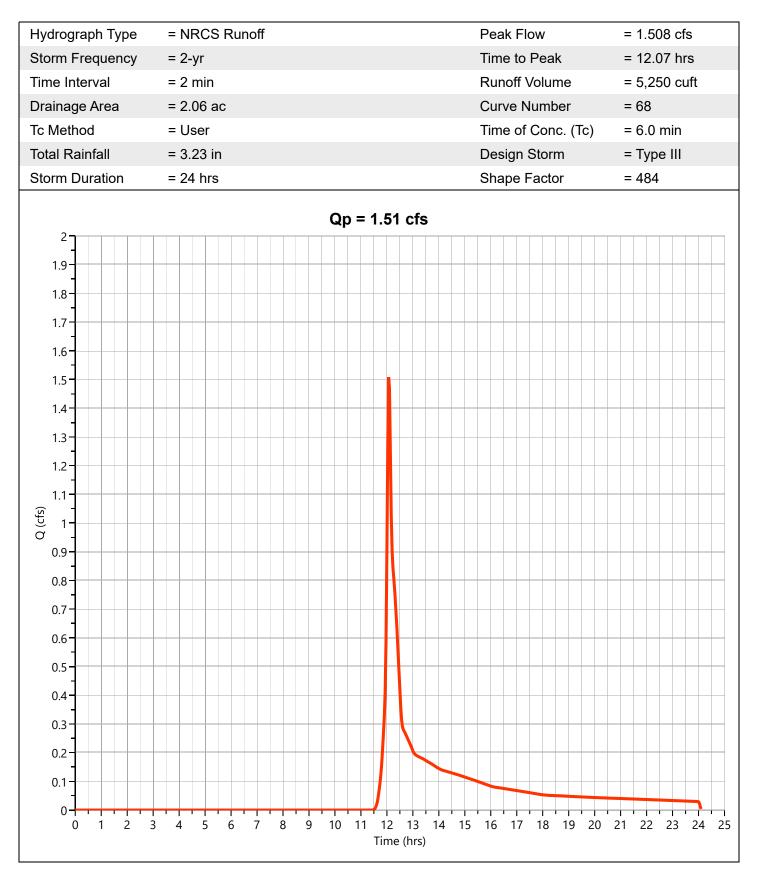
Storm #1 Storm #2 Storm #3 10 100 2 3.23 5.01 7.83

4.07

1.87

139.<u>52</u> =

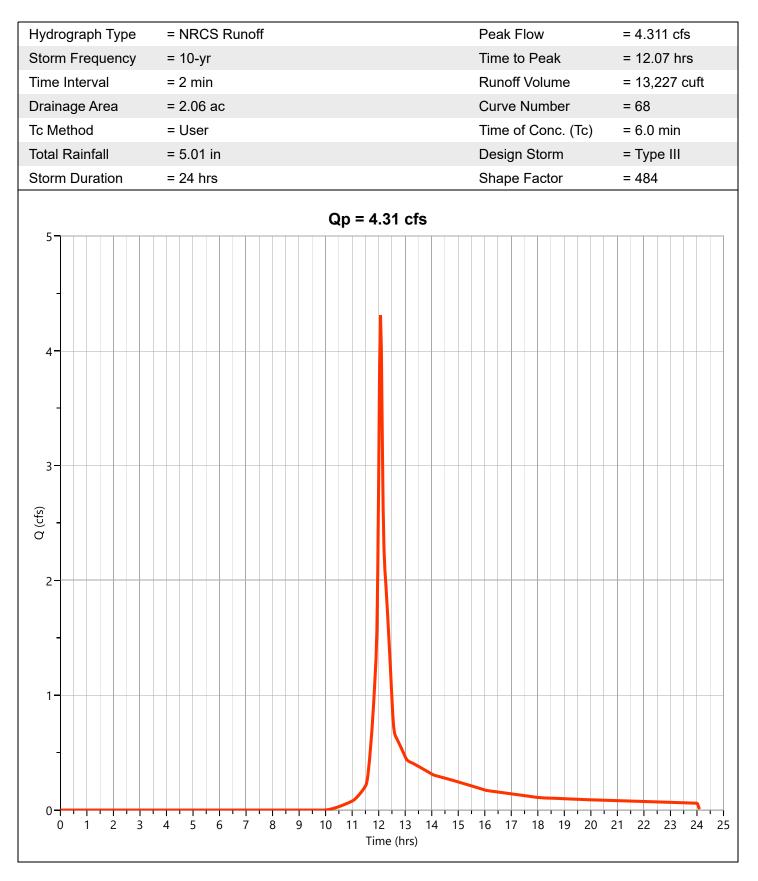
2.06


=

0.74

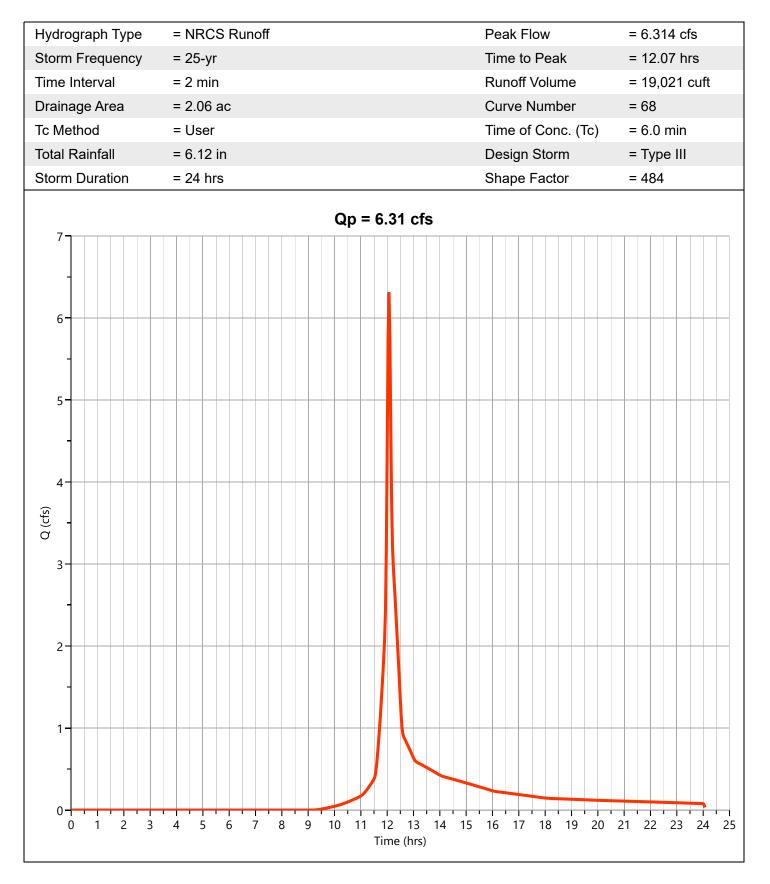
Hydrology Studio v 3.0.0.29

Subcatchment P-3B


12-13-2023

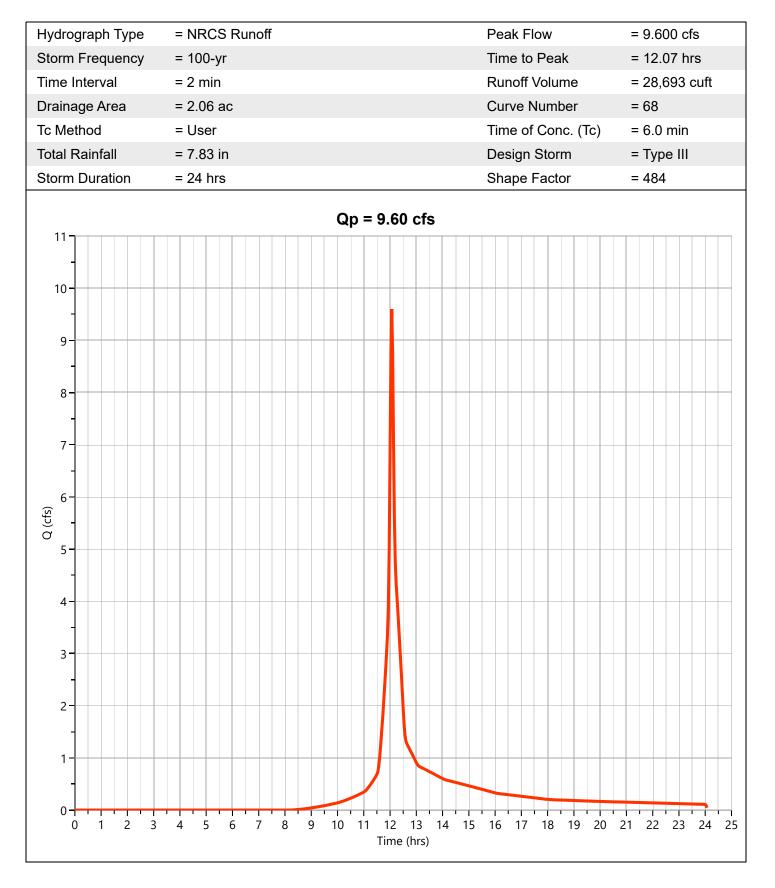
Hydrology Studio v 3.0.0.29

Subcatchment P-3B


12-13-2023

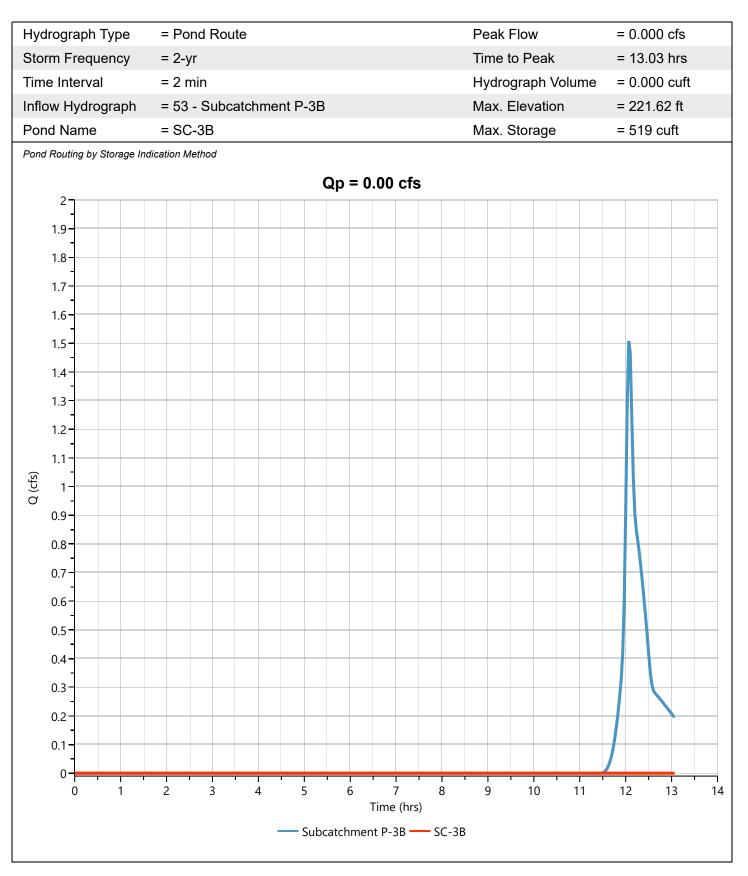
Hydrology Studio v 3.0.0.29

Subcatchment P-3B


12-13-2023

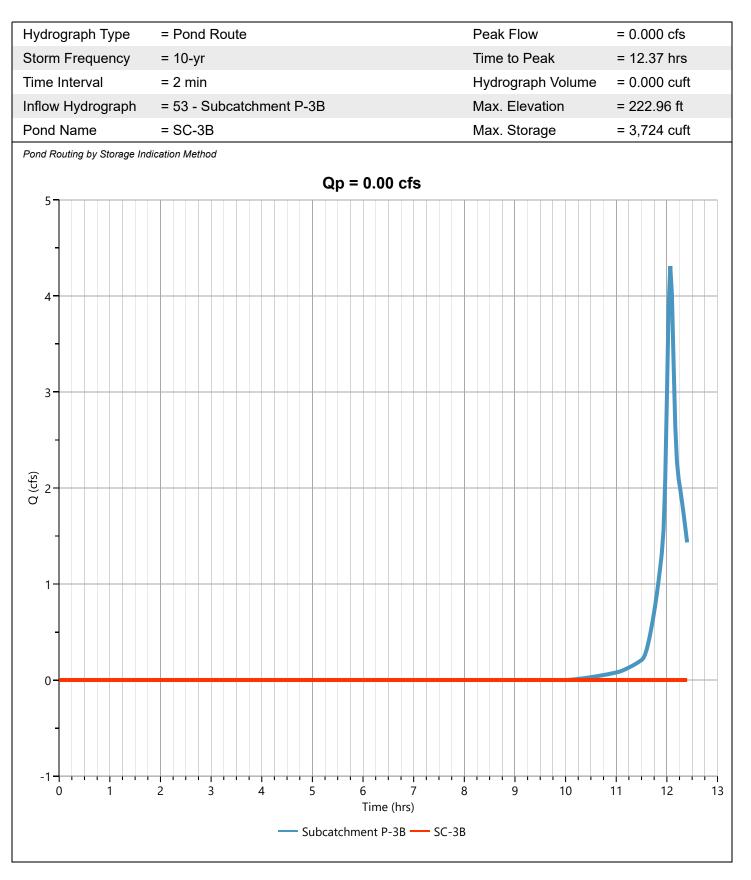
Hydrology Studio v 3.0.0.29

Subcatchment P-3B


12-13-2023

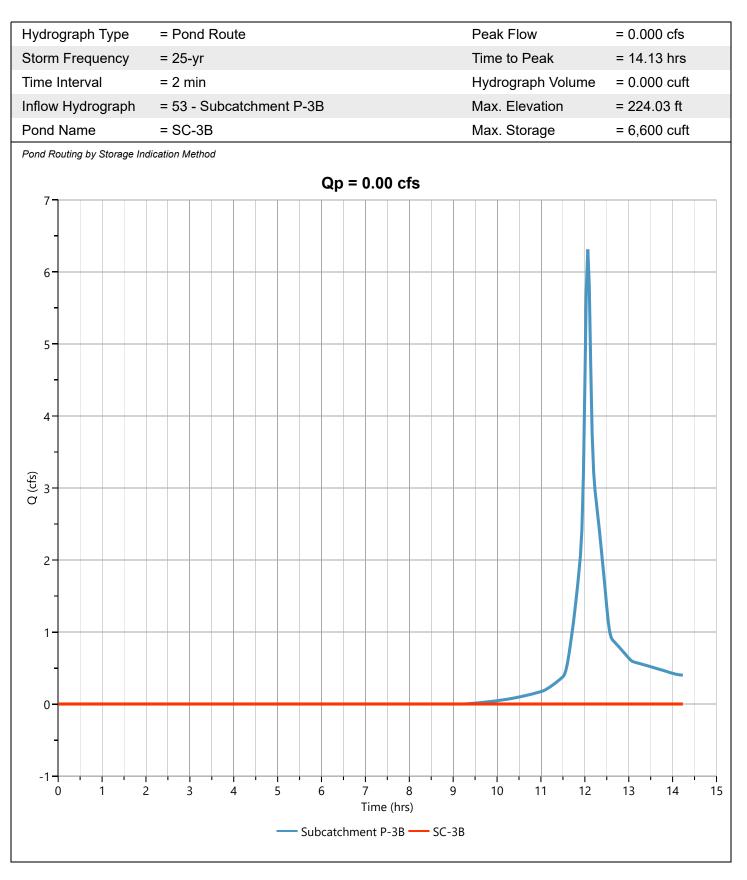
Hydrology Studio v 3.0.0.29

SC-3B


12-13-2023

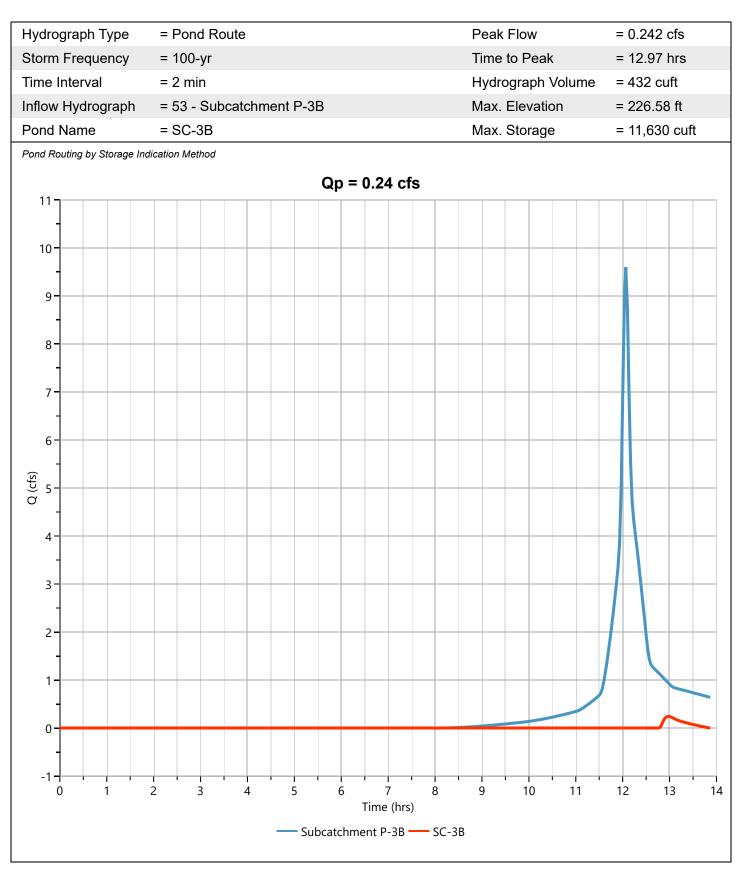
Hydrology Studio v 3.0.0.29

SC-3B


12-13-2023

Hydrology Studio v 3.0.0.29

SC-3B


12-13-2023

Hydrology Studio v 3.0.0.29

SC-3B

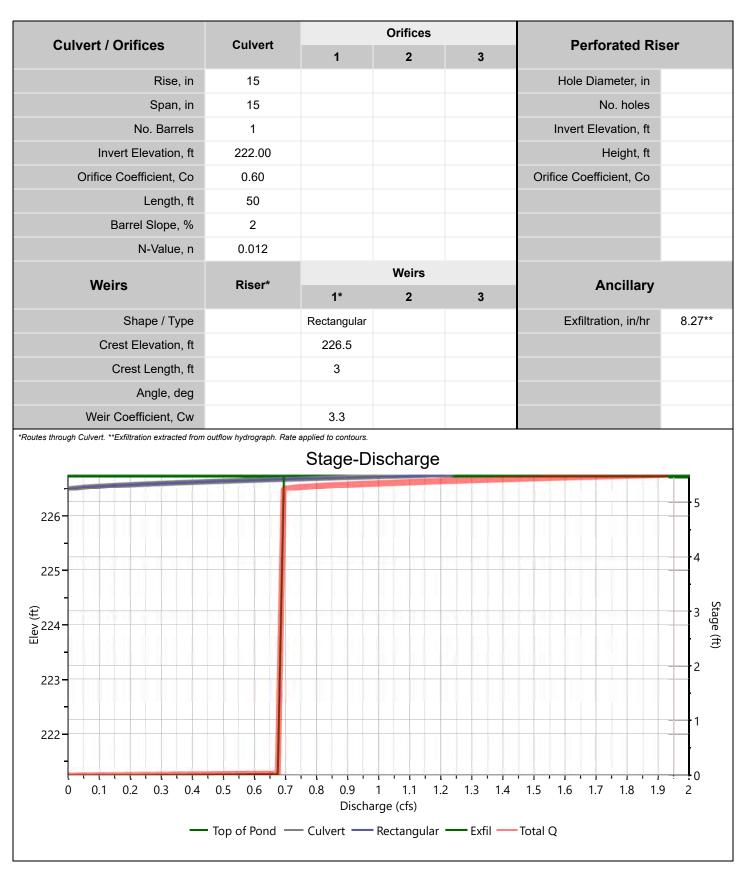
12-13-2023

Hydrology Studio v 3.0.0.29

SC-3B

12-13-2023

Stage-Storage


StormTech® MC-3500™ (Chamber			Stage / Stora	ige Table		
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)	
Chamber Height, in	45						
Chamber Shape	Arch	0.0	221.25 221.53	3,526 3,526	0.000 388	0.000	
Chamber Width, in	77	6.6	221.30	3,526	388	776	
		9.9	222.08	3,526	486	1,262	
Installed Length, ft	7.17	13.2	222.35	3,526	770	2,032	
No. Chambers	60	16.5	222.63	3,526	767	2,799	
		19.8	222.90	3,526	763	3,562	
Bare Chamber Stor, cuft	6,594	23.1	223.18	3,526	756	4,318	
No. Rows	8	26.4	223.45	3,526	746	5,064	
Crease Debugan Devis in	0	29.7	223.73	3,526	735	5,799	
Space Between Rows, in	9	33.0	224.00	3,526	720	6,519	
Stone Above, in	12	36.3	224.28	3,526	702	7,221	
Stone Below, in	9	39.6	224.55	3,526	681	7,902	
Stone Below, In	9	42.9	224.83	3,526	655	8,557	
Stone Sides, in	12	46.2	225.10	3,526	622	9,179	
Stone Ends, in	12	49.5	225.38	3,526	580	9,759	
	12	52.8	225.65	3,526	520	10,279	
Encasement Voids, %	40.00	56.1	225.93	3,526	421	10,700	
Encasement Bottom Elevation, ft	221.25	59.4	226.20	3,526	388	11,088	
	221.20	62.7	226.48	3,526	388	11,476	
		66.0	226.75	3,526	388	11,864	
		Stage-S	Storage				
227							
						5	
226-							
4							
225-						-4	
4						_	
224-						- 3	
						3	
+							
		-				- 2	

Hydrology Studio v 3.0.0.29

SC-3B

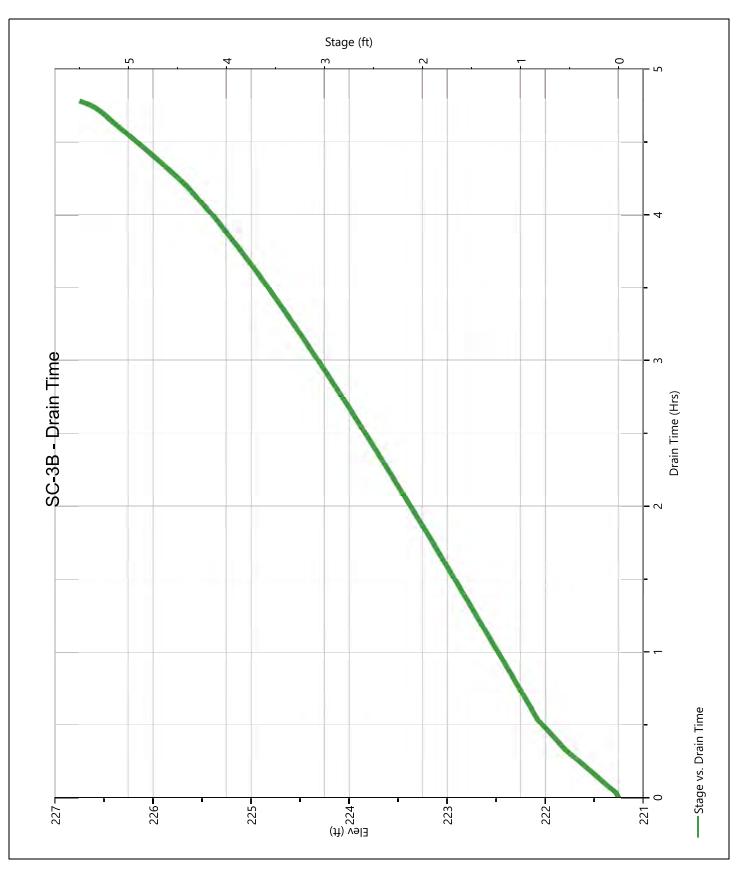
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

SC-3B

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	221.25	0.000	0.000					0.000				0.000		0.000
0.28	221.53	388	0.000					0.000				0.676		0.676
0.55	221.80	776	0.000					0.000				0.677		0.677
0.83	222.08	1,262	0.000					0.000				0.678		0.678
1.10	222.35	2,032	0.000					0.000				0.679		0.679
1.38	222.63	2,799	0.000					0.000				0.680		0.680
1.65	222.90	3,562	0.000					0.000				0.681		0.681
1.93	223.18	4,318	0.000					0.000				0.682		0.682
2.20	223.45	5,064	0.000					0.000				0.683		0.683
2.48	223.73	5,799	0.000					0.000				0.684		0.684
2.75	224.00	6,519	0.000					0.000				0.685		0.685
3.03	224.28	7,221	0.000					0.000				0.686		0.686
3.30	224.55	7,902	0.000					0.000				0.687		0.687
3.58	224.83	8,557	0.000					0.000				0.688		0.688
3.85	225.10	9,179	0.000					0.000				0.689		0.689
4.13	225.38	9,759	0.000					0.000				0.690		0.690
4.40	225.65	10,279	0.000					0.000				0.691		0.691
4.68	225.93	10,700	0.000					0.000				0.692		0.692
4.95	226.20	11,088	0.000					0.000				0.693		0.693
5.23	226.48	11,476	0.000					0.000				0.694		0.694
5.50	226.75	11,864	1.238 ic					1.238				0.695		1.933
														l
														l
														l
														l
														l
														l
														l

12-13-2023

Hydrology Studio v 3.0.0.29

SC-3B

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
	Impervious	98			0.05	4.63
A	Woods - Good Condition	30			2.09	62.62
A	Open Space - Good Condition	39			0.51	19.72
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one	CN source per line.			Totals =	2.64	86.97

86.97

2.64

Storm #2

10

5.01

0.04

=

Storm #3

7.83

0.59

=

Storm #1

2

3.23

0.04

CN (weighted) = total product total area

32.94 ;

Use CN =

33

2. Runoff

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked _____ Date _____ Circle one: Present Developed Subcatchment P-3C Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded

ft

in

ft/ft

2. Mannings roughness coeff., n (table 3-1)

5. Land Slope, s

3. Flow length, L (total L <= 300 ft)

4. Two-yr 24-hr rainfall, P2

6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr

0.22

Shallow concentrated Flow	Segment ID	B-C	C-D	
7. Surface Description (paved or unpaved)		UNPAVED	UNPAVED	
8. Flow Length, L	ft	30	39	
9. Watercourse slope, s	ft/ft	0.1	0.2	
10. Average Velocity, V (figure 3-1)	ft/s	5.10	7.22)
11. Tt = L / 3600V	Compute Tt hr	0.00	0.00	0
Channel flow	Segment ID			

0.00

-12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft 19. Tt = L / 3600V Compute Tt hr 0

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

0.22 13.3

hr

min

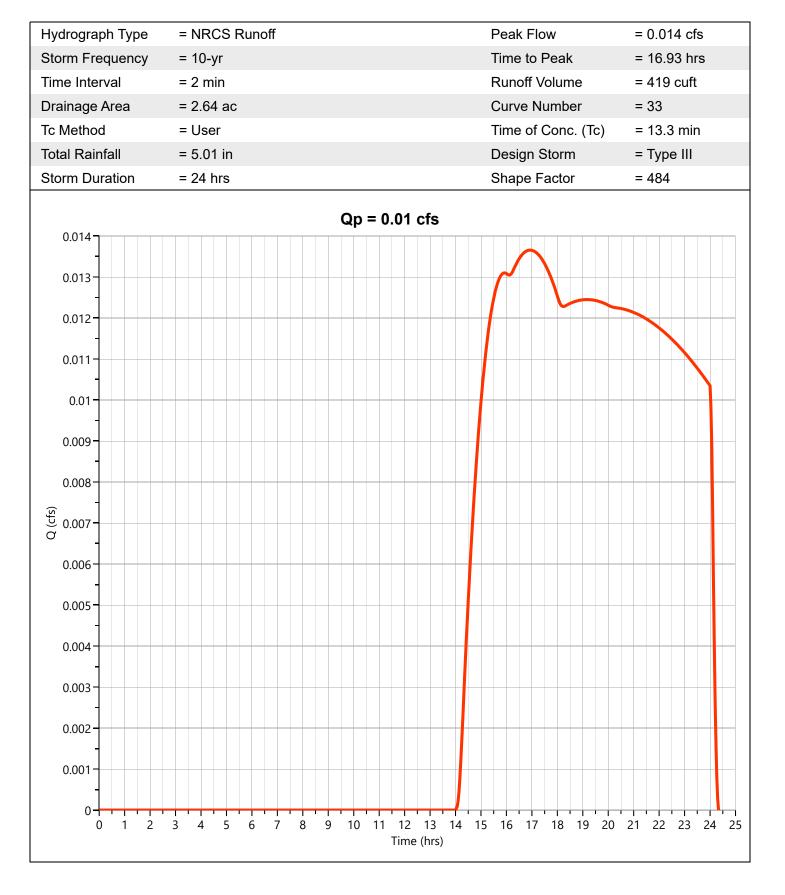
Hydrology Studio v 3.0.0.29

Subcatchment P-3C

12-13-2023

Hyd. No. 55

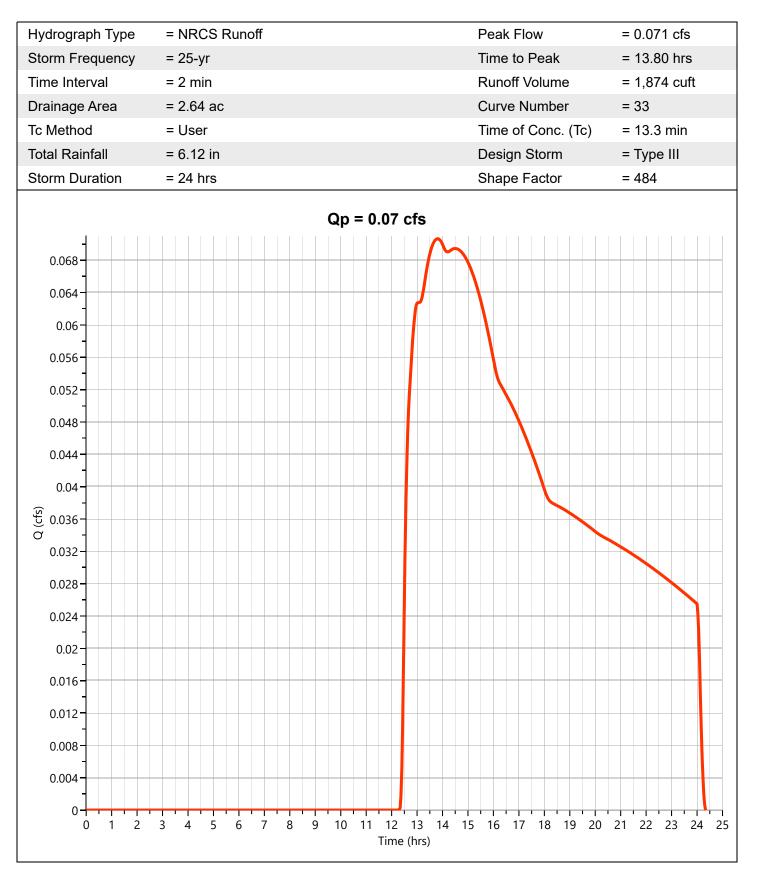
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 2.64 ac	Curve Number	= 33
Tc Method	= User	Time of Conc. (Tc)	= 13.3 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484


Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

Subcatchment P-3C

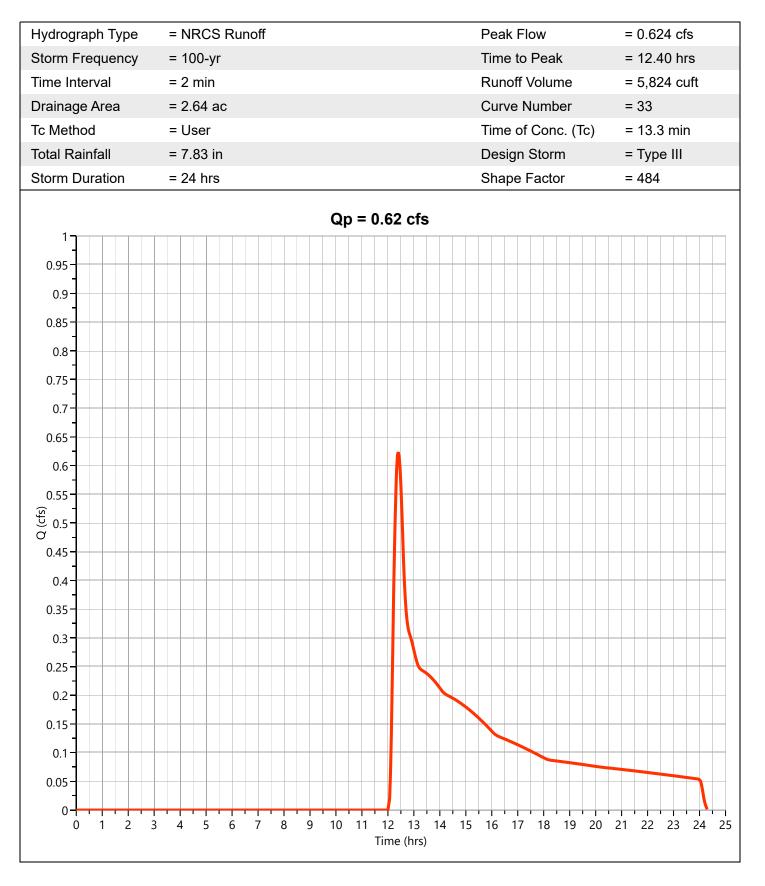
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment P-3C

12-13-2023



Hydrology Studio v 3.0.0.29

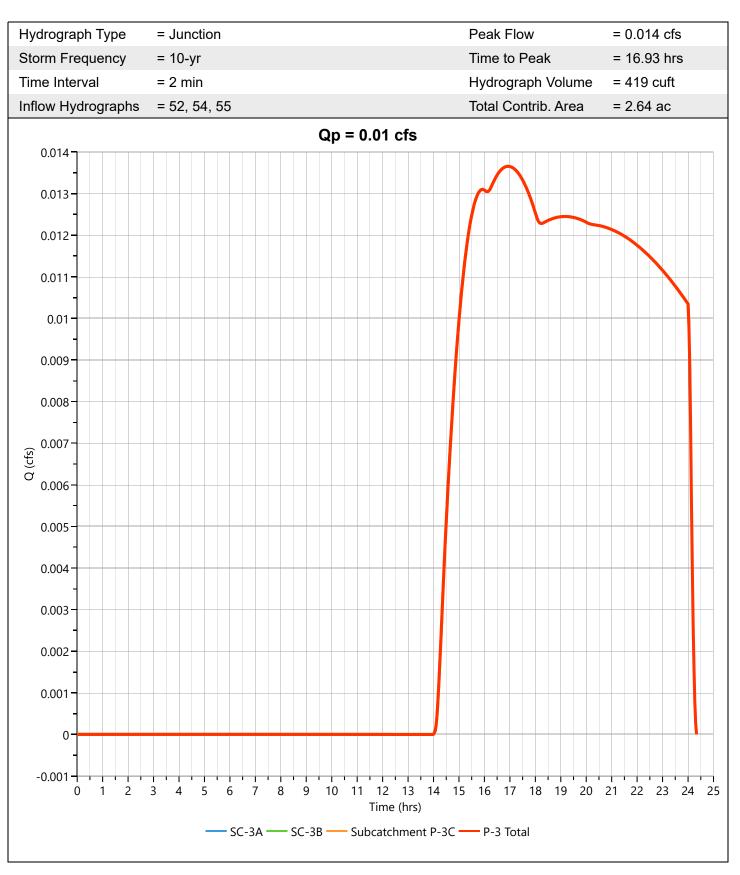
Subcatchment P-3C

12-13-2023

Project Name:

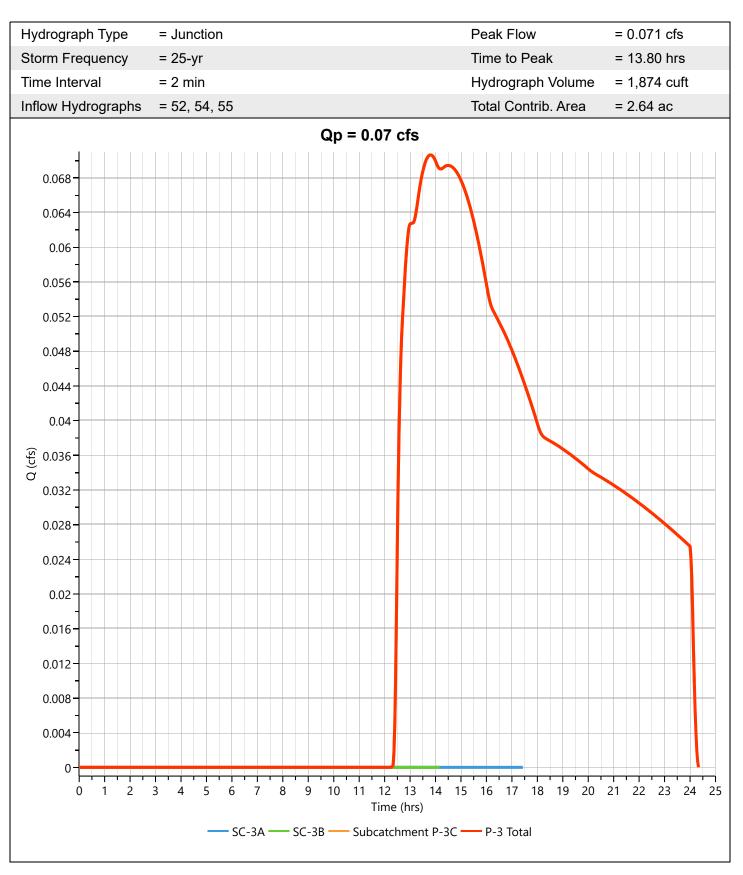
Hydrology Studio v 3.0.0.29

P-3 Total


12-13-2023

Hydrology Studio v 3.0.0.29

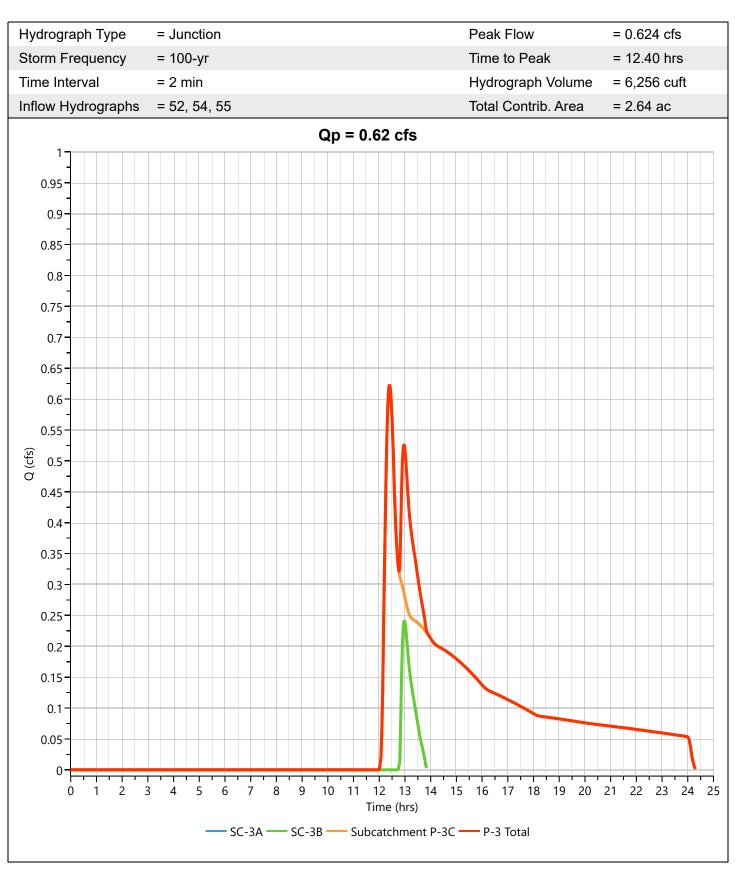
P-3 Total


12-13-2023

Hydrology Studio v 3.0.0.29

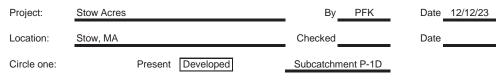
P-3 Total

12-13-2023



Hydrology Studio v 3.0.0.29

P-3 Total


12-13-2023

Project Name:

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.26	25.96
А	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	N source per line.	-		Totals =	0.26	25.96
CN (weig	ghted) = total product = 25.96 =	98.00	; Use	CN =	98]

Storm #3

100

7.83

7.59

0.26

Storm #2

10

5.01

4.77

total area

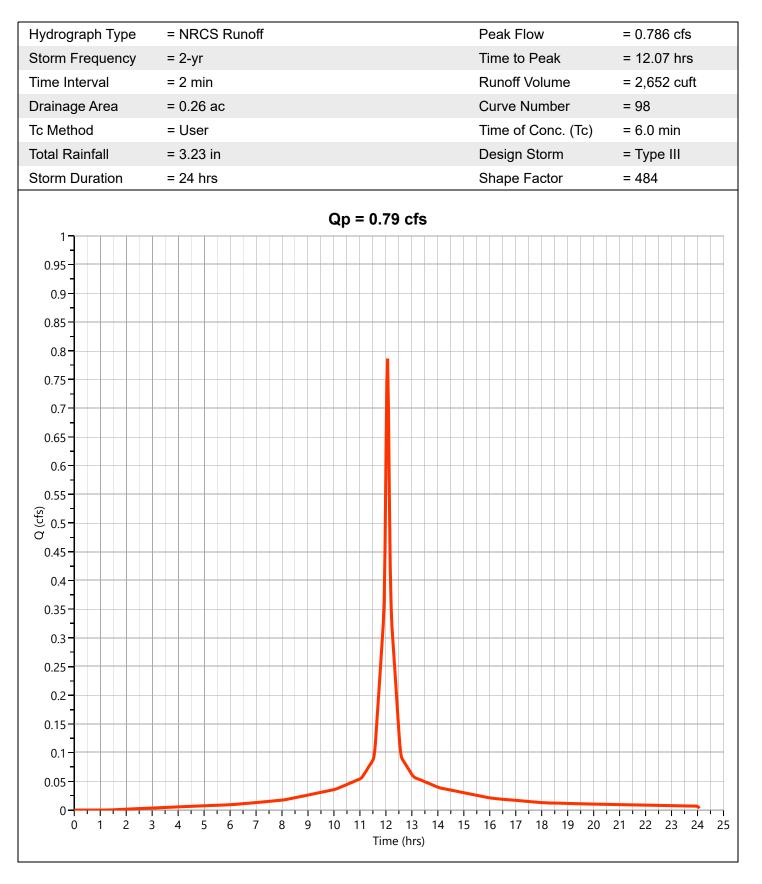
Storm #1

2 3.23

3.00

2. Runoff

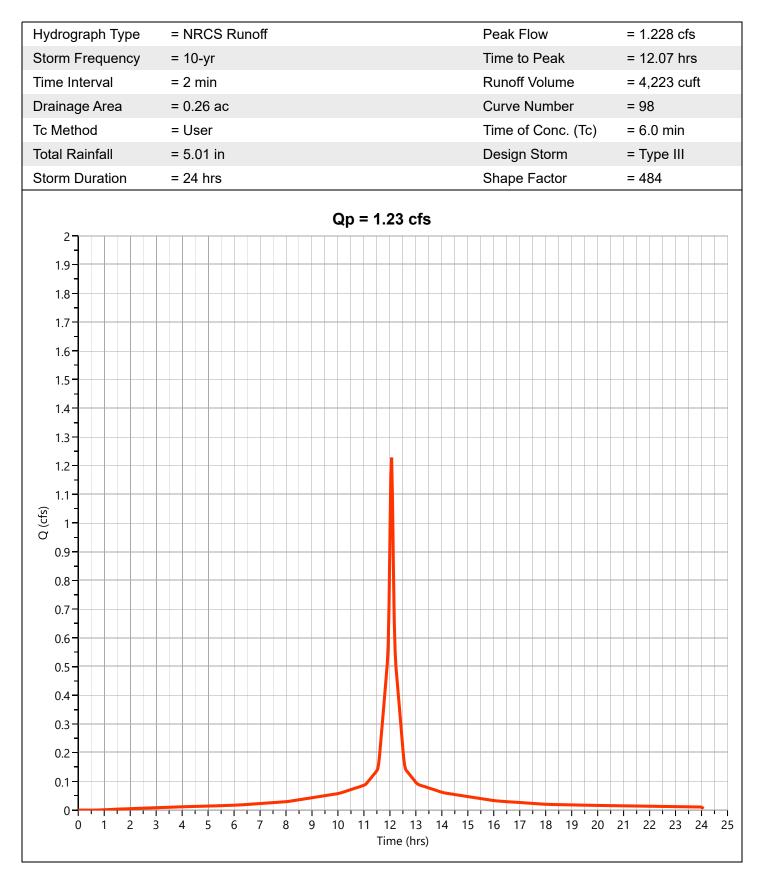
Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in


Use CN =

Hydrology Studio v 3.0.0.29

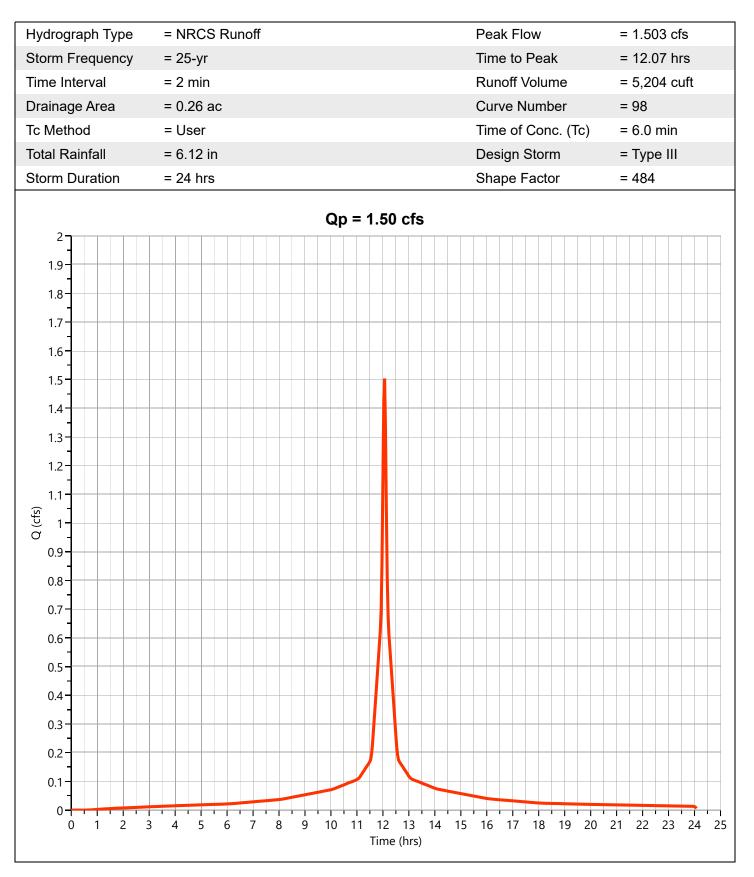
Subcatchment P-4A

12-13-2023


Project Name:

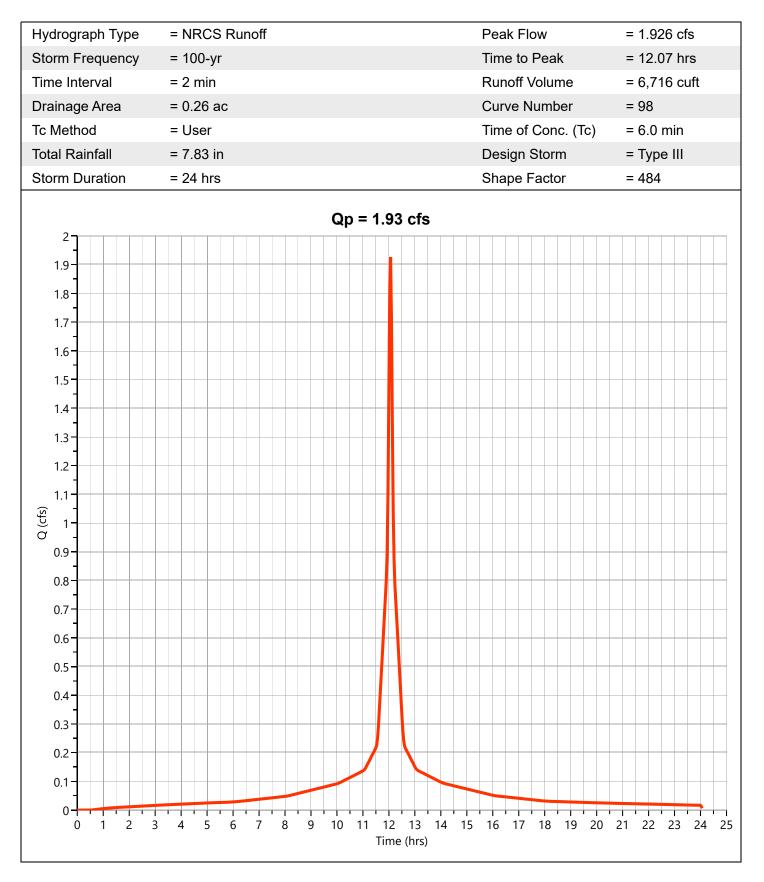
Hydrology Studio v 3.0.0.29

Subcatchment P-4A


12-13-2023

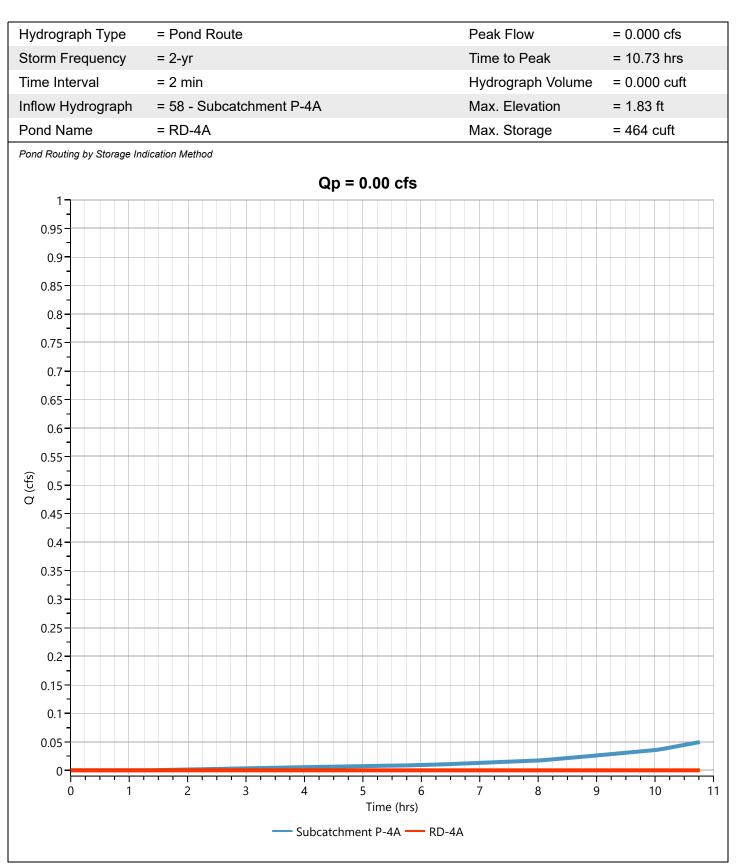
Hydrology Studio v 3.0.0.29

Subcatchment P-4A


12-13-2023

Hydrology Studio v 3.0.0.29

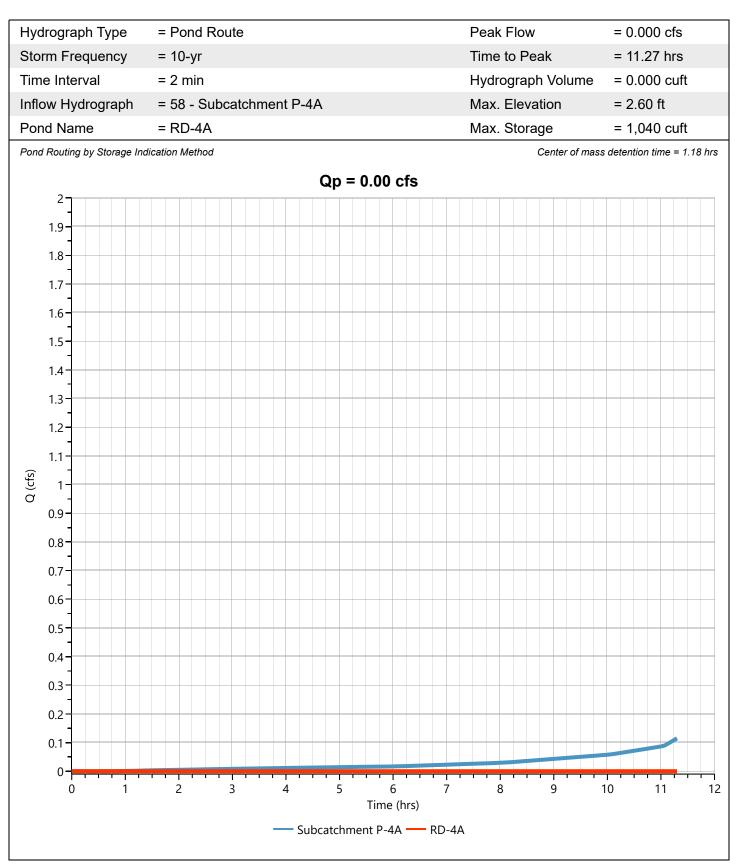
Subcatchment P-4A


12-13-2023

Hydrology Studio v 3.0.0.29

RD-4A

12-13-2023



Hydrology Studio v 3.0.0.29

RD-4A

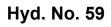
12-13-2023

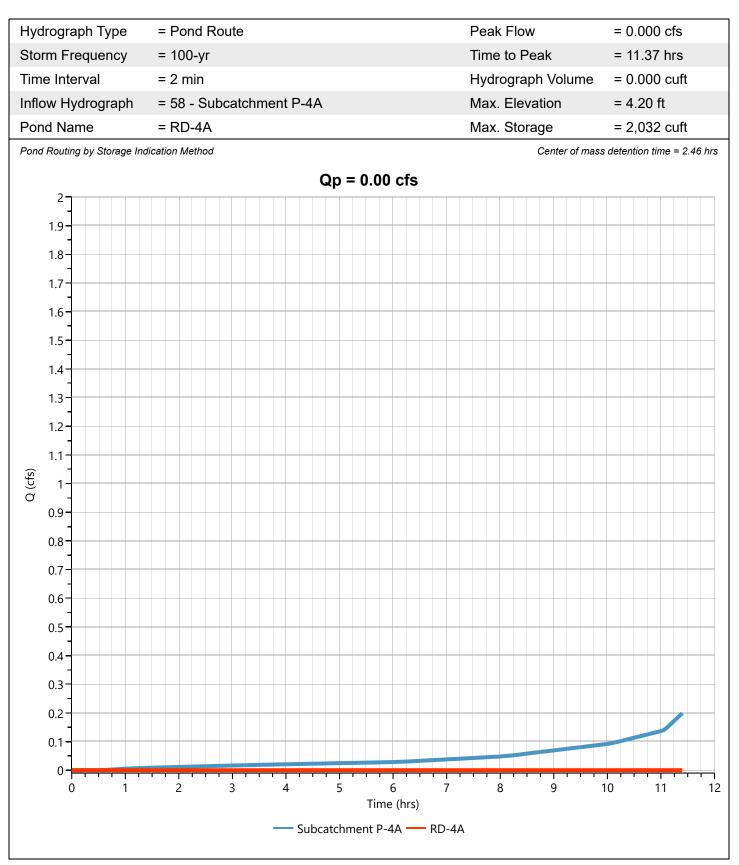
Hydrology Studio v 3.0.0.29

RD-4A

12-13-2023

16


Hydrograph Type Peak Flow = Pond Route Storm Frequency Time to Peak = 25-yr = 15.63 hrs Time Interval = 2 min Hydrograph Volume = 0.000 cuft Inflow Hydrograph = 58 - Subcatchment P-4A Max. Elevation = 3.14 ft Pond Name = RD-4A Max. Storage = 1,422 cuft Pond Routing by Storage Indication Method Center of mass detention time = 17 min Qp = 0.00 cfs2 1.9-1.8-1.7-1.6 1.5 1.4 1.3-1.2-1.1-Q (cfs) 1-0.9-0.8-0.7 0.6-0.5-0.4-0.3-0.2-0.1-0. 2 і З 4 1 5 6 8 10 12 13 15 0 7 9 11 14 Time (hrs) Subcatchment P-4A — RD-4A


= 0.000 cfs

Hydrology Studio v 3.0.0.29

RD-4A

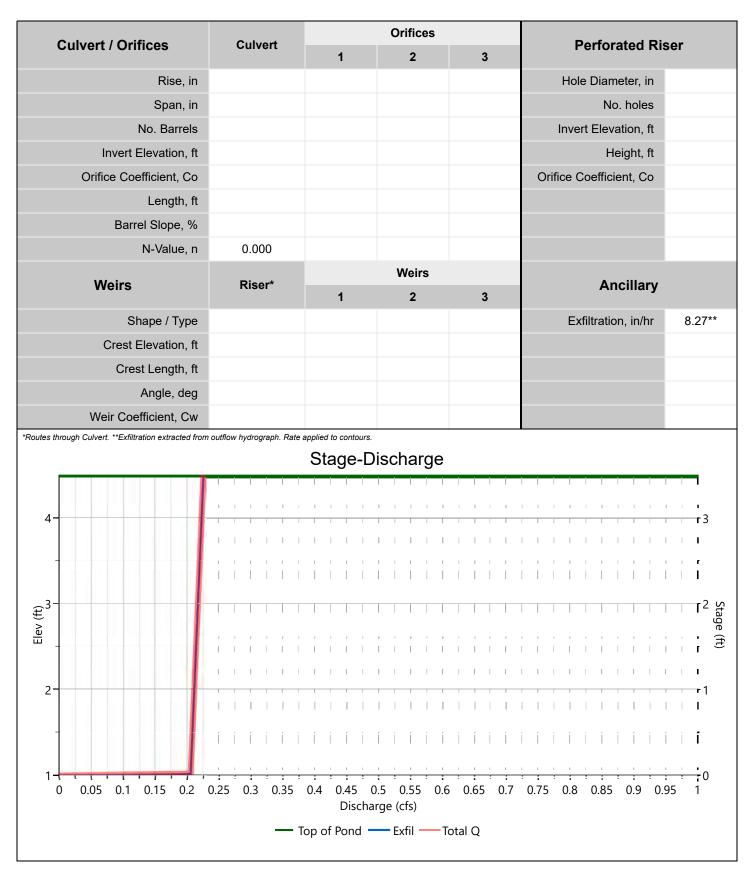
12-13-2023

Hydrology Studio v 3.0.0.29

RD-4A

12-13-2023

Stage-Storage


StormTech® SC-740™ Ch	amber			Stage / Stora	ige Table	
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)
Chamber Height, in	30					
Chamber Shape	Arch	0.0 2.1	1.00 1.18	1,070 1,070	0.000 74.9	0.000
		4.2	1.15	1,070	74.9	150
Chamber Width, in	51	6.3	1.53	1,070	82.7	232
Installed Length, ft	7.12	8.4	1.70	1,070	134	366
No. Chambers	24	10.5	1.88	1,070	133	500
		12.6	2.05	1,070	133	632
Bare Chamber Stor, cuft	1,102	14.7	2.23	1,070	132	764
No. Rows	3	16.8	2.40	1,070	131	895
Space Between Rows, in	18	18.9	2.58	1,070	129	1,024
		21.0 23.1	2.75 2.93	1,070 1,070	127 125	1,151 1,275
Stone Above, in	6	25.2	3.10	1,070	123	1,397
Stone Below, in	6	27.3	3.28	1,070	118	1,515
Stone Sides, in	12	29.4	3.45	1,070	114	1,629
		31.5	3.63	1,070	109	1,738
Stone Ends, in	12	33.6	3.80	1,070	102	1,841
Encasement Voids, %	40.00	35.7	3.97	1,070	91.8	1,932
Encasement Bottom Elevation, ft	1.00	37.8	4.15	1,070	77.0	2,009
	1.00	39.9	4.32	1,070	74.9	2,084
		^{42.0} Stage-S	^{4.50} Storage	1,070	74.9	2,159
5				1,070	74.9	2,159
5				1,070	74.9	
5				1,070	74.9	<u> </u>
5				1,070	74.9	4
				1,070	74.9	<u> </u>
4-				1,070	74.9	4
4				1,070	74.9	4
4				1,070	74.9	4
4-				1,070	74.9	4
4-				1,070	74.9	4
				1,070	74.9	4
4-				1,070	74.9	4
				1,070	74.9	4
				1,070	74.9	4
				1,070	74.9	4
		Stage-S		1,070		4

Hydrology Studio v 3.0.0.29

RD-4A

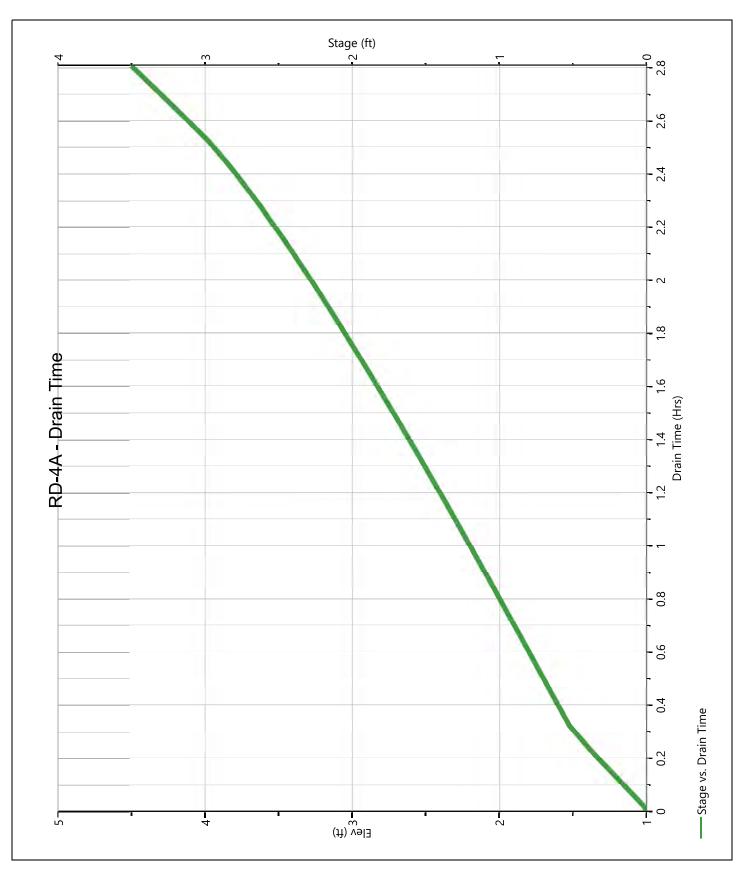
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

RD-4A

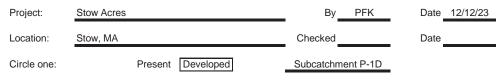
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	;	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1.00	0.000										0.000		0.000
0.18	1.18	74.9										0.206		0.206
0.35	1.35	150										0.207		0.207
0.53	1.53	232										0.208		0.208
0.70	1.70	366										0.209		0.209
0.88	1.88	500										0.210		0.210
1.05	2.05	632										0.211		0.211
1.23	2.23	764										0.212		0.212
1.40	2.40	895										0.213		0.213
1.58	2.58	1,024										0.214		0.214
1.75	2.75	1,151										0.215		0.215
1.93	2.93	1,275										0.216		0.216
2.10	3.10	1,397										0.217		0.217
2.28	3.28	1,515										0.218		0.218
2.45	3.45	1,629										0.219		0.219
2.63	3.63	1,738										0.220		0.220
2.80	3.80	1,841										0.221		0.221
2.97	3.97	1,932										0.222		0.222
3.15	4.15	2,009										0.223		0.223
3.32	4.32	2,084										0.224		0.224
3.50	4.50	2,159										0.225		0.225
		I												L

12-13-2023

Hydrology Studio v 3.0.0.29

RD-4A


Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.07	7.17
A	Woods - Good Condition	30			1.10	32.86
A	Open Space - Good Condition	39			0.73	28.60
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN so	urce per line.	-		Totals =	1.90	68.63
CN (weighted	d) =total_product68.63 _=	36.09	; Use	CN =	36	1

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Storm #2 Storm #3 10 100

1.90

0.11

Storm #1

2 3.23

0.01

5.01 7.83

0.84

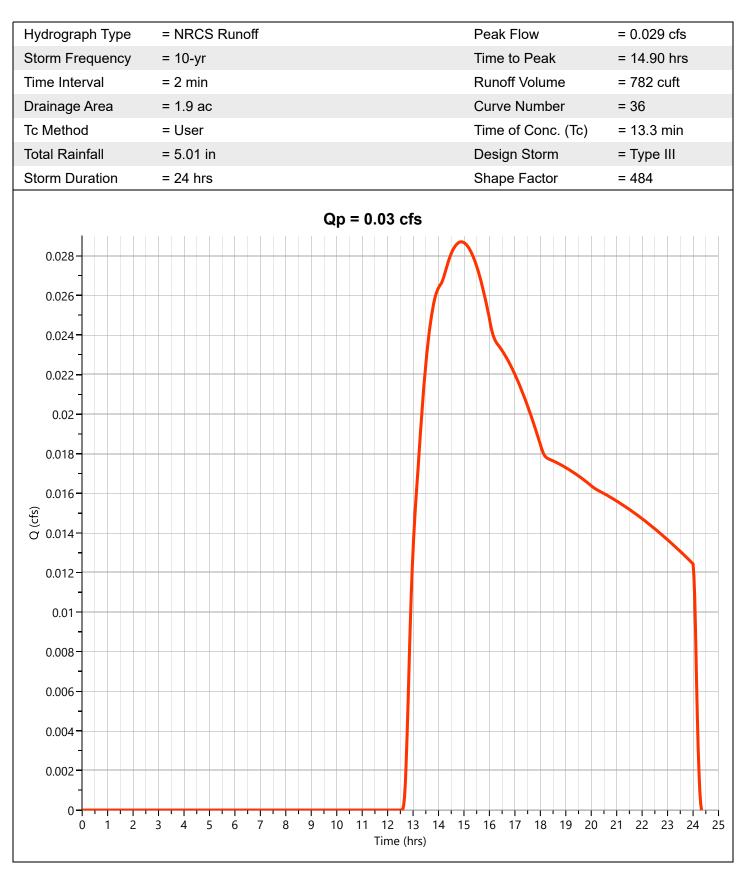
Hydrology Studio v 3.0.0.29

Subcatchment P-4B

3
3

Hyd. No. 60

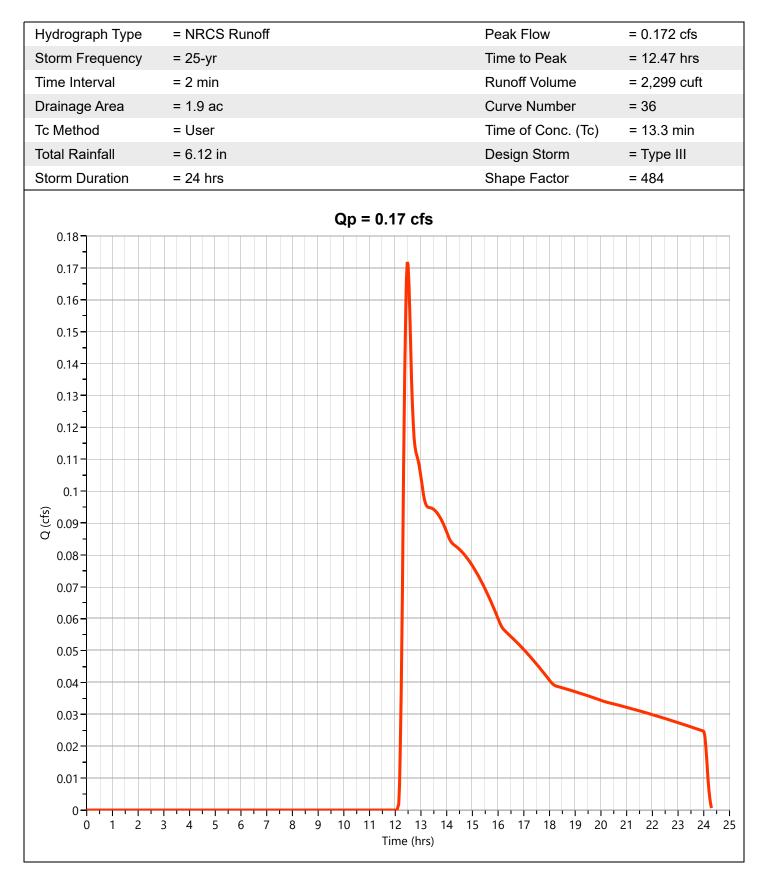
Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 1.9 ac	Curve Number	= 36
Tc Method	= User	Time of Conc. (Tc)	= 13.3 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484


Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

Subcatchment P-4B

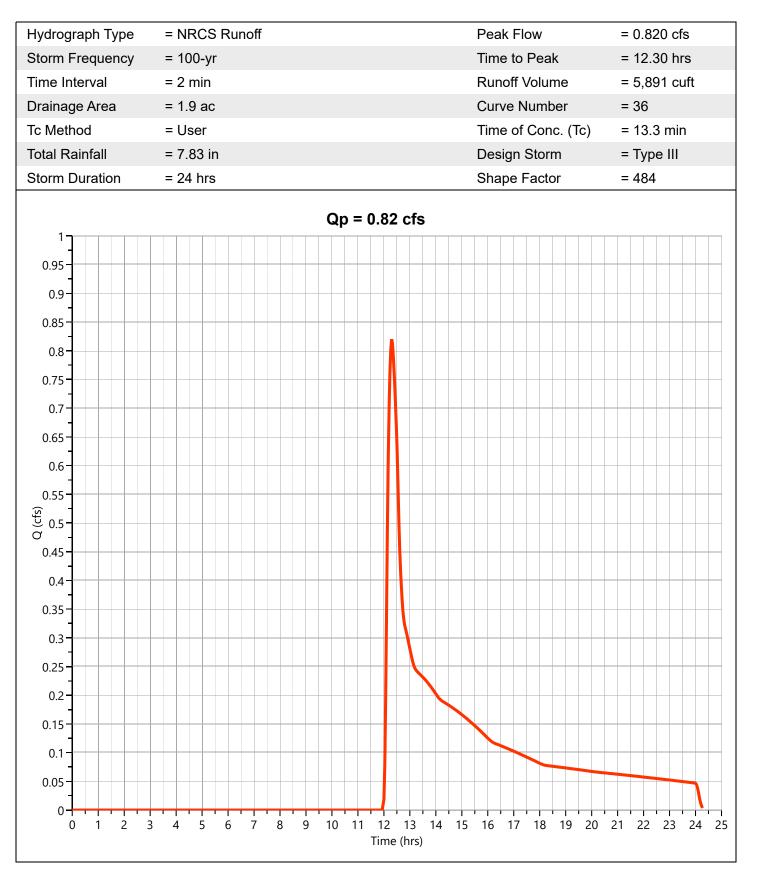
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment P-4B

12-13-2023

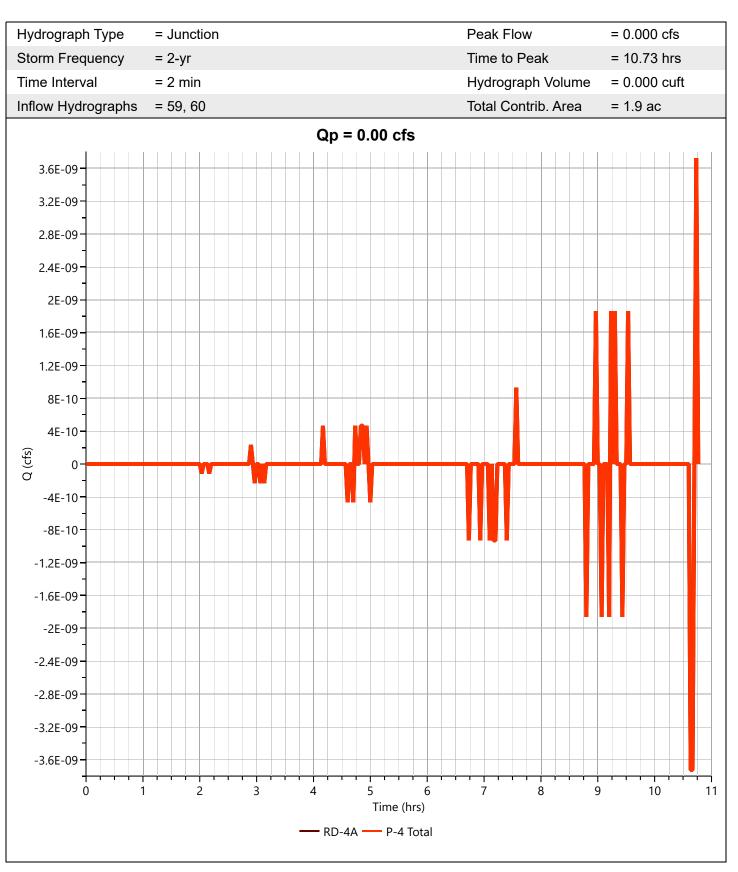


Hydrology Studio v 3.0.0.29

Subcatchment P-4B

12-13-2023

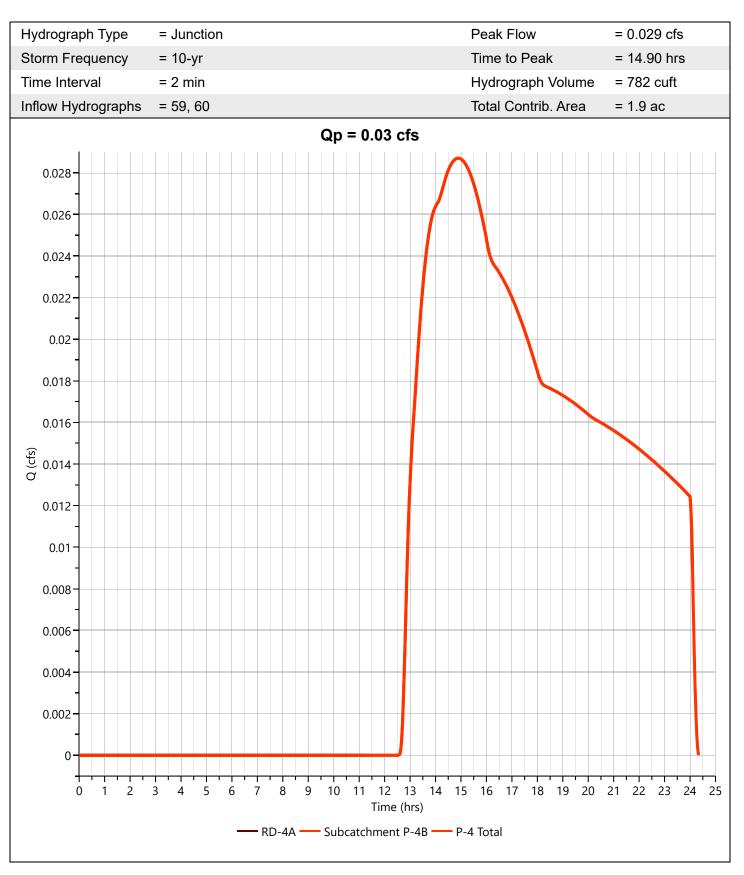
Project Name:



Hydrology Studio v 3.0.0.29

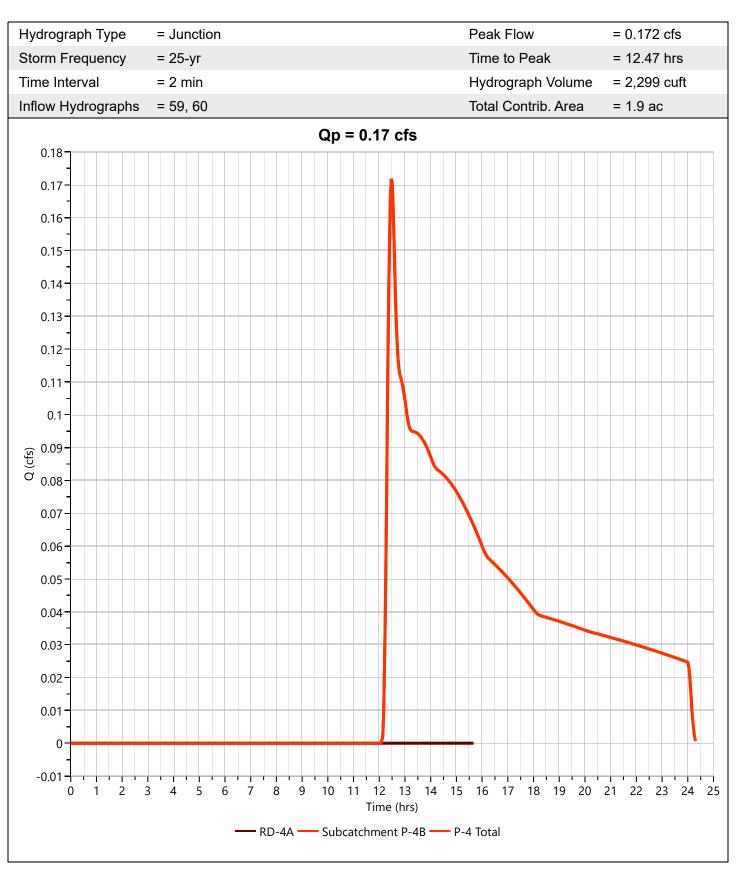
P-4 Total

12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

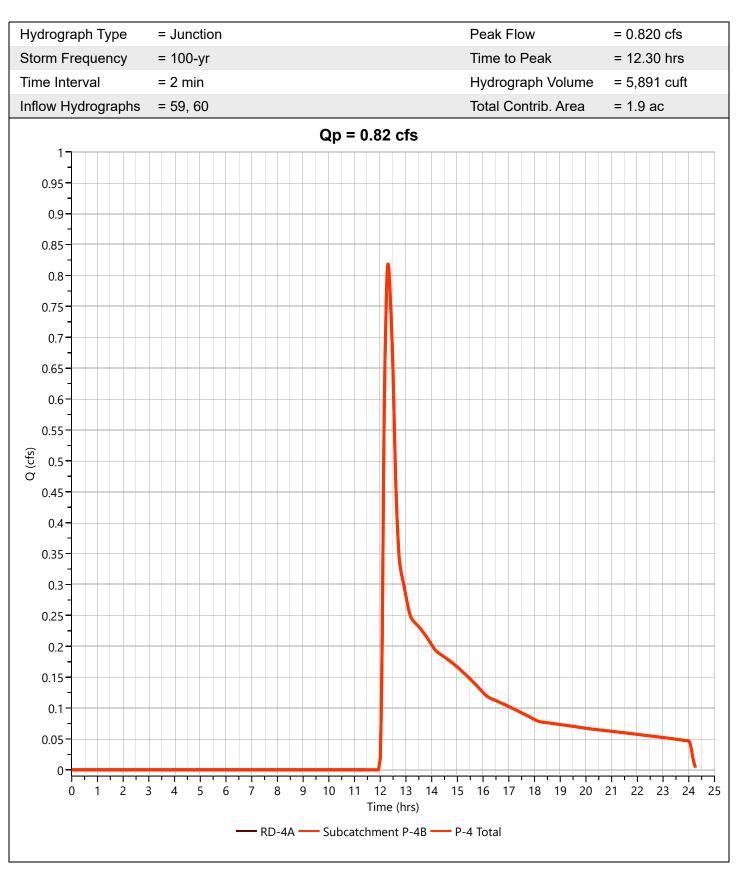
P-4 Total


12-13-2023

Hydrology Studio v 3.0.0.29

P-4 Total

12-13-2023



Hydrology Studio v 3.0.0.29

P-4 Total

12-13-2023

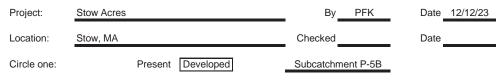
Project Name:

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment P-4B Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.050 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.20 0.20 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 260 9. Watercourse slope, s 0.045 ft/ft 10. Average Velocity, V (figure 3-1) ft/s 3.42 11. Tt = L / 3600V Compute Tt hr 0.02 0.02 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3


0.22 13.3

hr

min

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic			CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.13	12.81
А	Woods - Good Condition	30			0.00	0.00
A	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	l source per line.	_		Totals =	0.13	12.81
CN (weigh	hted) = total product = 12.81 = 0.13	98.00	; Use	CN =	98]

0.13

Storm #2

10

5.01

4.77

Storm #3

100

7.83

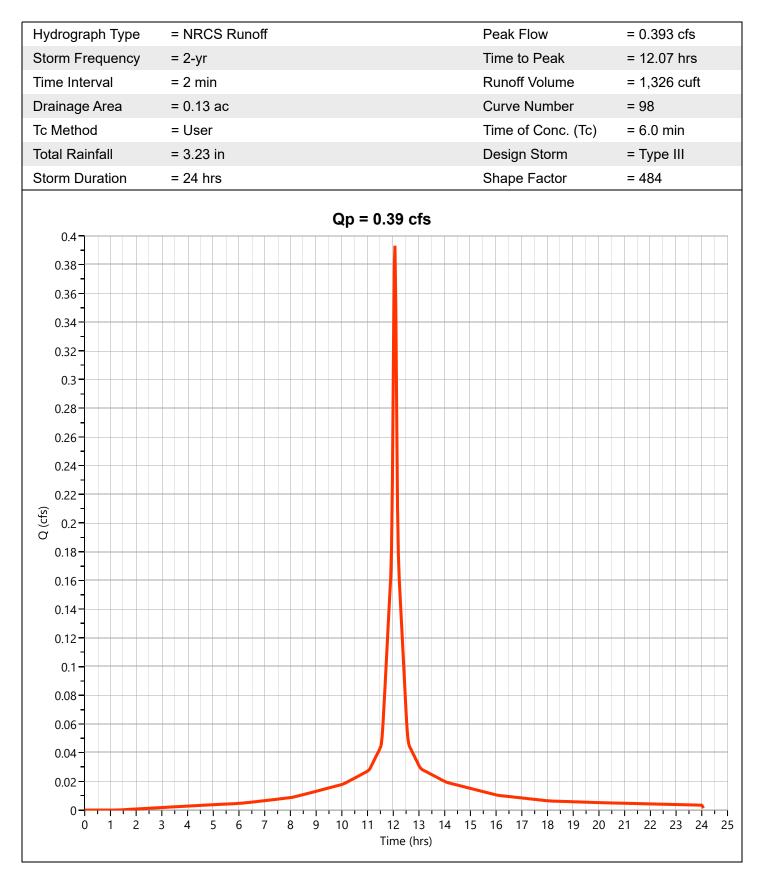
7.59

Storm #1

2 3.23

3.00

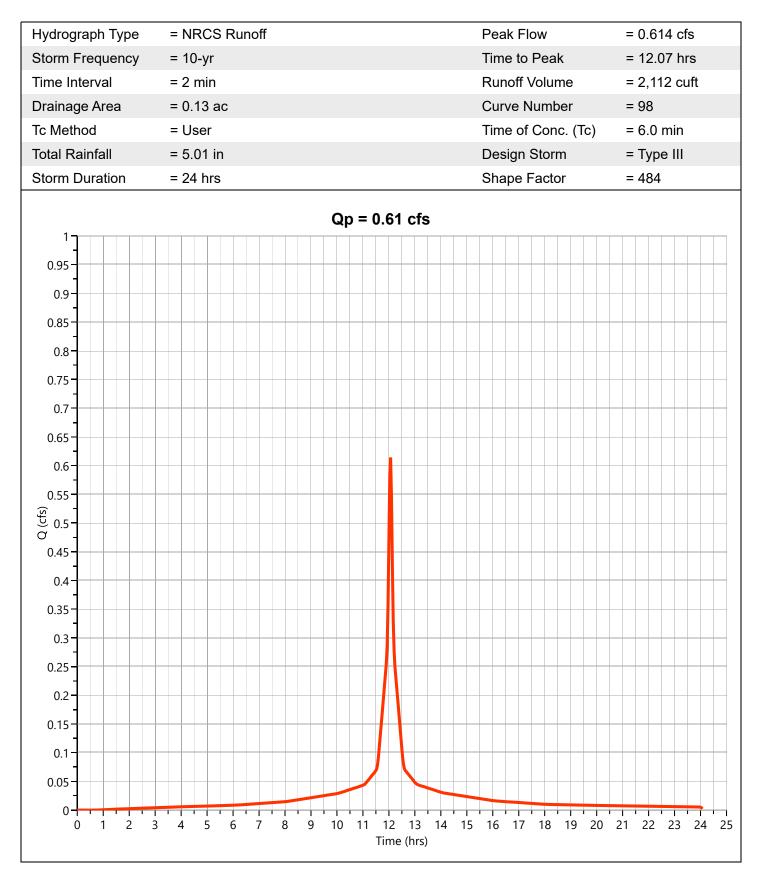
2. Runoff


Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

total area

Hydrology Studio v 3.0.0.29

Subcatchment P-5A


12-13-2023

Hydrology Studio v 3.0.0.29

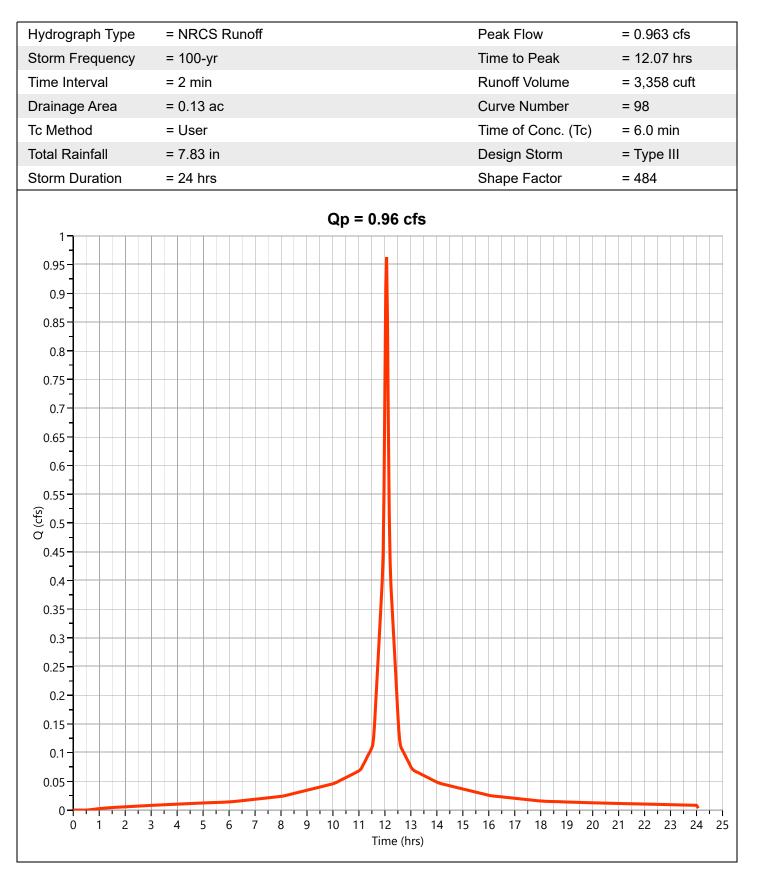
Subcatchment P-5A

12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-5A

12-13-2023



Hydrology Studio v 3.0.0.29

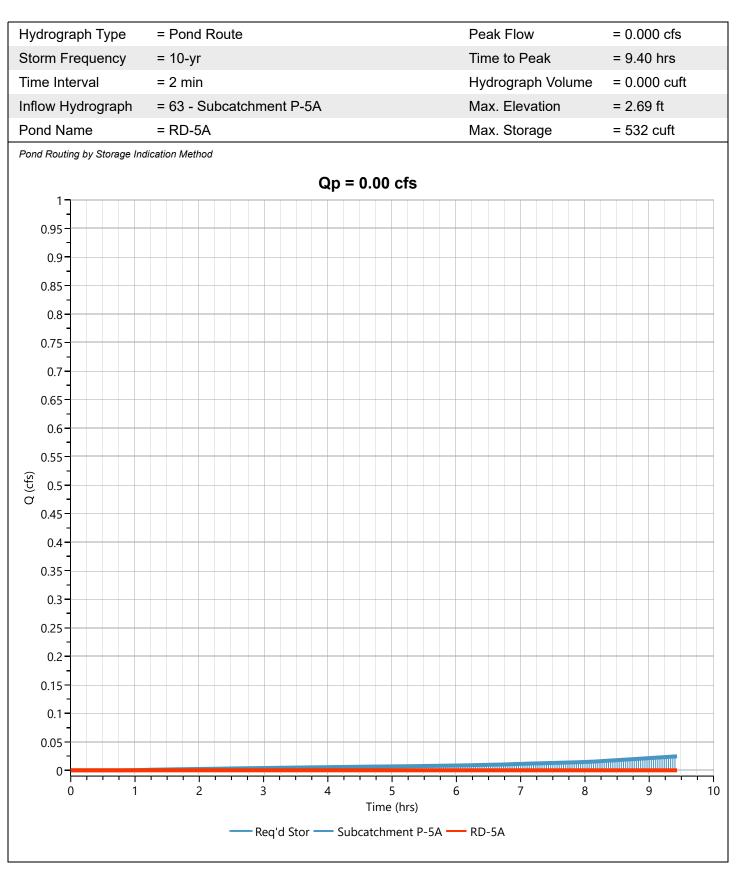
Subcatchment P-5A


12-13-2023

Project Name:

Hydrology Studio v 3.0.0.29

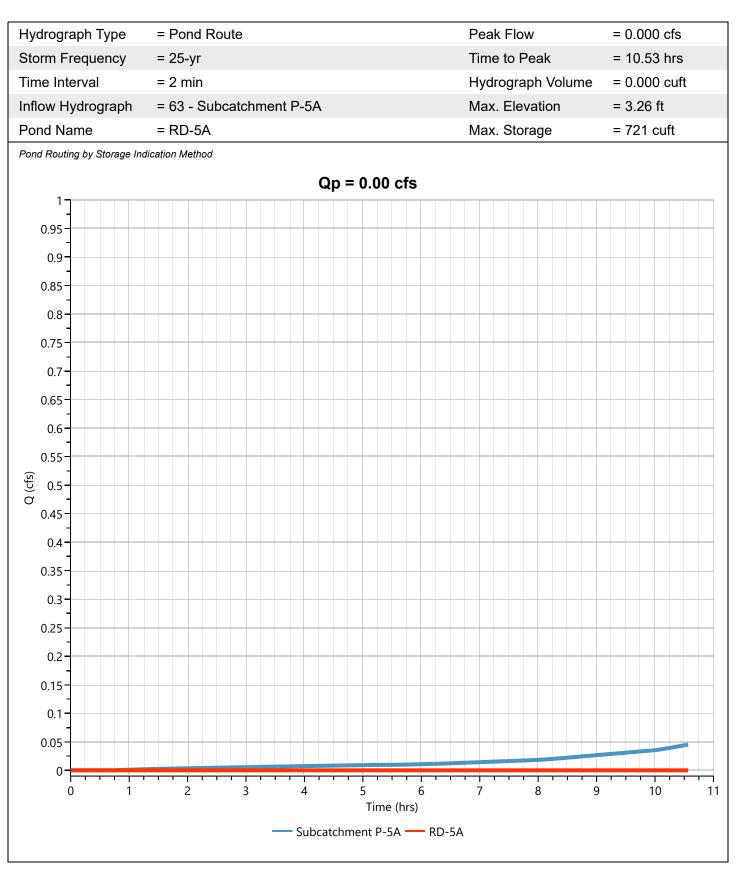
RD-5A


Hyd. No. 64

12-13-2023

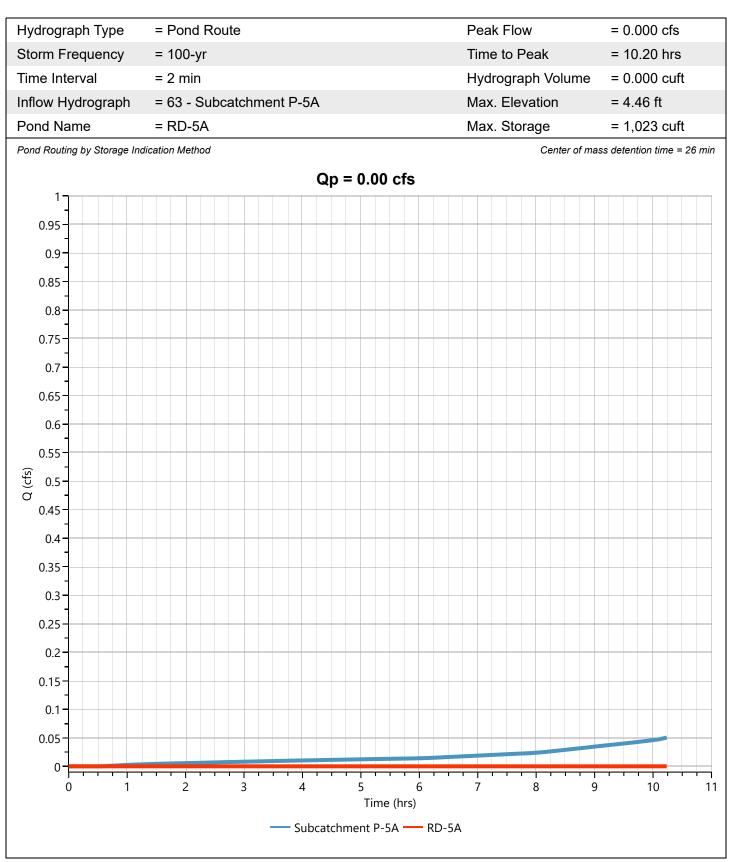
Hydrology Studio v 3.0.0.29

RD-5A


12-13-2023

Hydrology Studio v 3.0.0.29

RD-5A


12-13-2023

Hydrology Studio v 3.0.0.29

RD-5A

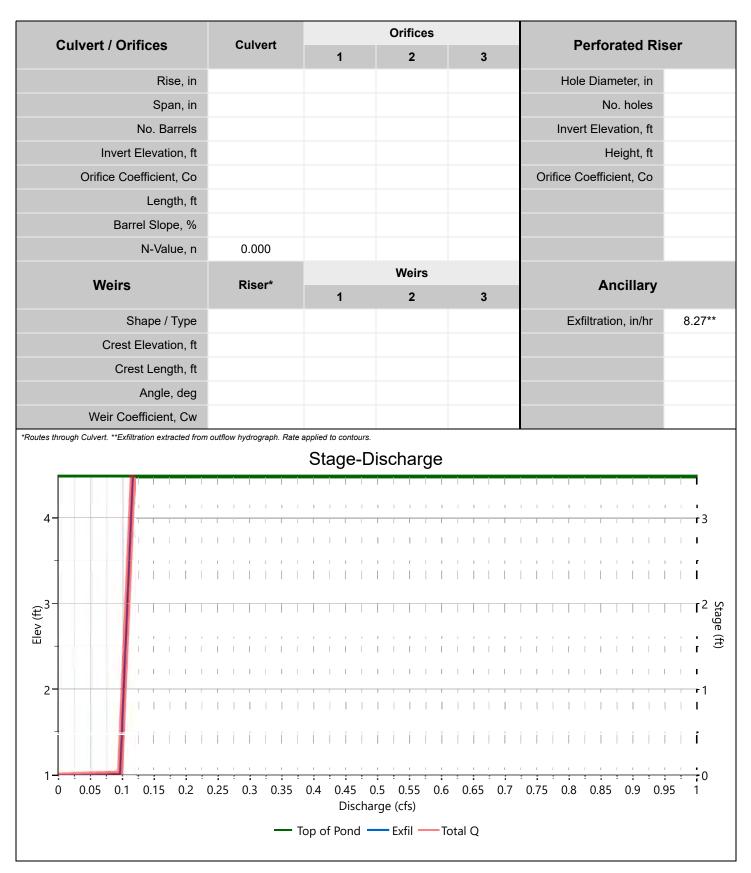
12-13-2023

Hydrology Studio v 3.0.0.29

RD-5A

12-13-2023

Stage-Storage


StormTech® SC-740™ Chamber			Stage / Storage Table					
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)		
Chamber Height, in	30							
Chamber Shape	Arch	0.0	1.00	501	0.000	0.000		
		2.1 4.2	1.18 1.35	501 501	35.1 35.1	35.1 70.1		
Chamber Width, in	51	6.3	1.53	501	39.0	109		
Installed Length, ft	7.12	8.4	1.70	501	64.5	174		
No. Chambers	12	10.5	1.88	501	64.3	238		
		12.6	2.05	501	64.0	302		
Bare Chamber Stor, cuft	551	14.7	2.23	501	63.5	365		
No. Rows	3	16.8	2.40	501	62.9	428		
Space Between Rows, in	6	18.9	2.58	501	62.1	490		
		21.0	2.75	501	61.1	551		
Stone Above, in	6	23.1	2.93	501	59.9	611		
Stone Below, in	6	25.2 27.3	3.10 3.28	501 501	58.5 56.8	670 727		
		27.3	3.20	501	54.7	727		
Stone Sides, in	12	31.5	3.63	501	52.1	833		
Stone Ends, in	12	33.6	3.80	501	48.7	882		
Encasement Voids, %	40.00	35.7	3.97	501	43.5	926		
		37.8	4.15	501	36.1	962		
ncasement Bottom Elevation, ft	1.00	39.9	4.32	501	35.1	997		
		39.9	4.02	001	00.1	001		
		42.0	4.50 Storage	501	35.1	1,032		
;		42.0	4.50					
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0	4.50			1,032		
		42.0 Stage-S	4.50 Storage	501	35.1			
		42.0 Stage-S	4.50		35.1			

Hydrology Studio v 3.0.0.29

RD-5A

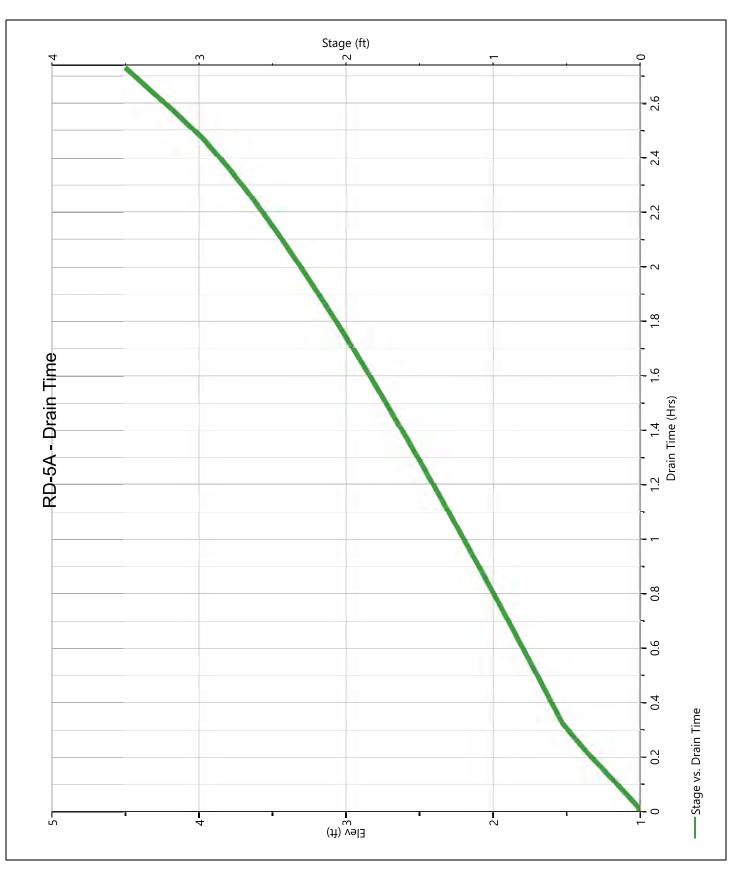
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

RD-5A

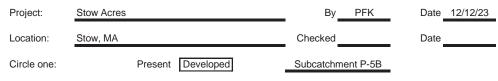
Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	S	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1.00	0.000										0.000		0.000
0.18	1.18	35.1										0.097		0.097
0.35	1.35	70.1										0.098		0.098
0.53	1.53	109										0.099		0.099
0.70	1.70	174										0.100		0.100
0.88	1.88	238										0.101		0.101
1.05	2.05	302										0.102		0.102
1.23	2.23	365										0.103		0.103
1.40	2.40	428										0.104		0.104
1.58	2.58	490										0.105		0.105
1.75	2.75	551										0.106		0.106
1.93	2.93	611										0.107		0.107
2.10	3.10	670										0.108		0.108
2.28	3.28	727										0.109		0.109
2.45	3.45	781										0.110		0.110
2.63	3.63	833										0.111		0.111
2.80	3.80	882										0.112		0.112
2.97	3.97	926										0.113		0.113
3.15	4.15	962										0.114		0.114
3.32	4.32	997										0.115		0.115
3.50	4.50	1,032										0.116		0.116
														l
														l

12-13-2023

Hydrology Studio v 3.0.0.29

RD-5A


Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/	Area	Product of CN x Area	
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.00	0.00
A	Woods - Good Condition	30			0.06	1.76
A	Open Space - Good Condition	39			0.31	11.91
С	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	source per line.			Totals =	0.36	13.67

13.67

0.36

Storm #2

10

5.01

0.15

=

Storm #3

100

7.83

0.96

=

Storm #1

2 3.23

0.00

37.55;

Use CN =

38

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Worksheet 3: Time of Concentration (Tc) or travel time (Tt) SM-6781 PFK Date 12/12/2023 Project: Stow Acres By Location: Stow, MA Checked Date Circle one: Present Developed Subcatchment P-5B Circle one: Тс Τt through subarea Segment ID Sheet flow (Applicable to Tc only) A-B 1. Surface Description (table 3-1) Wooded 2. Mannings roughness coeff., n (table 3-1) 0.6 3. Flow length, L (total L <= 300 ft) ft 50 4. Two-yr 24-hr rainfall, P2 in 3.1 5. Land Slope, s ft/ft 0.040 6. Tt = 0.007 (nL)^0.8 / (P2^0.5 s^0.4) Compute Tt hr 0.22 0.22 Shallow concentrated Flow Segment ID B-C 7. Surface Description (paved or unpaved) UNPAVED 8. Flow Length, L ft 113 9. Watercourse slope, s ft/ft 0.08 10. Average Velocity, V (figure 3-1) ft/s 4.56 11. Tt = L / 3600V Compute Tt hr 0.01 0.01 Channel flow Segment ID 12. Cross sectional flow area, a sf 13. Wetted perimeter, pw ft 14. Hydraulic radius, r=a/wp Compute r ft 15. Channel Slope, s ft/ft 16. Manning's roughness coeff., n 17. V = 1.49 r^2/3 s^1/2 / n Compute V ft/s 18. Flow length, L ft Compute Tt hr 19. Tt = L / 3600V 0

20. Watershed or subarea Tc or Tt (add Tt in steps 6, 11, and 19)

(210-VI-TR-55, Second Ed., June 1986)

D-3

0.23 13.5

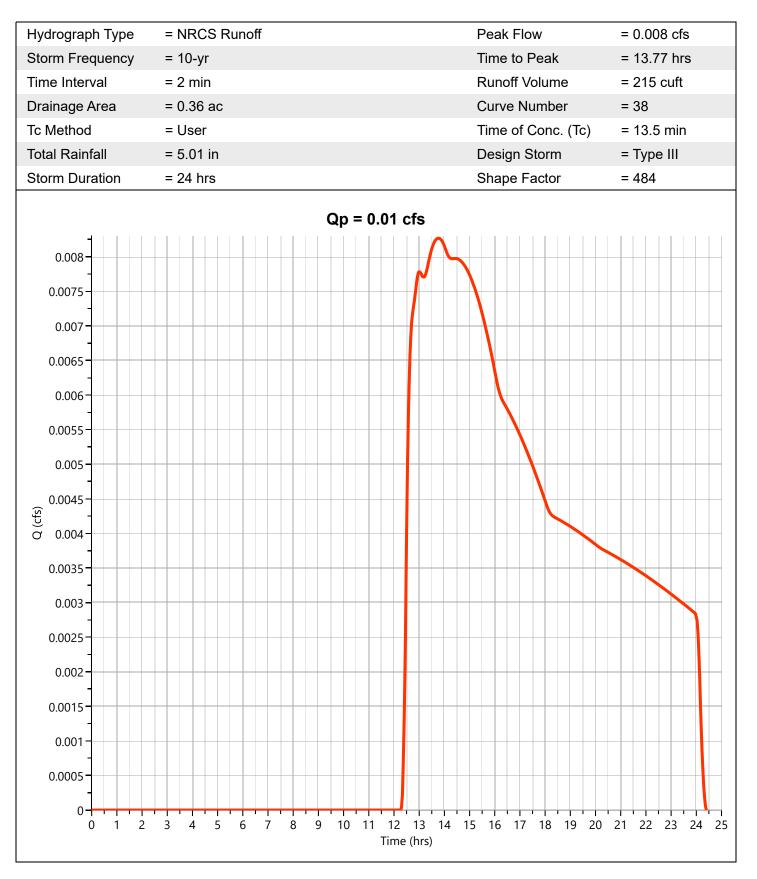
hr

min

Hydrology Studio v 3.0.0.29

Subcatchment P-5B

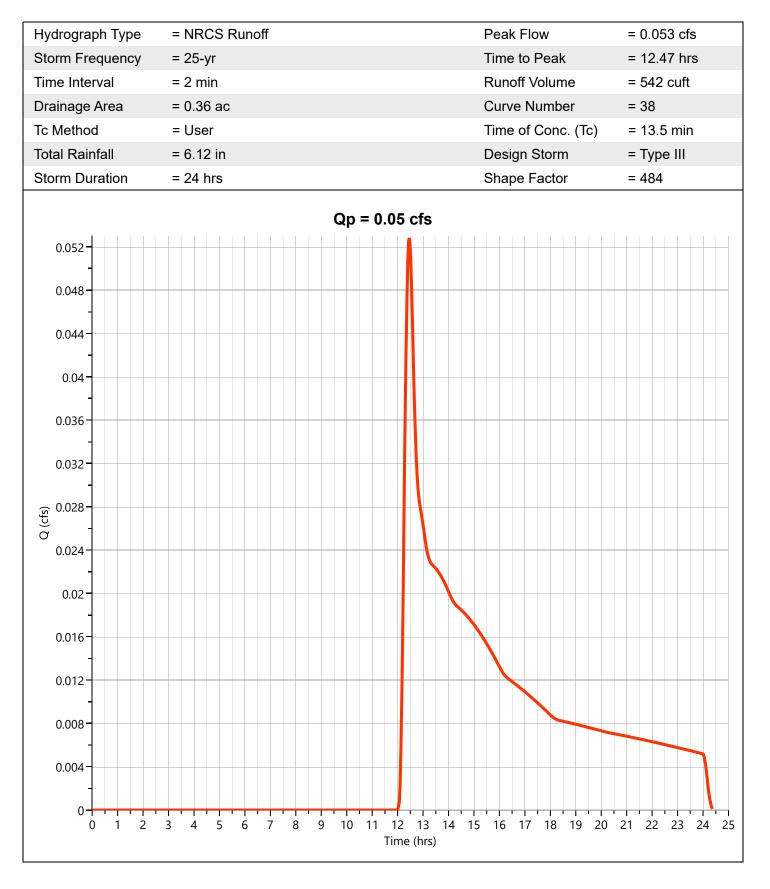
Hyd. No. 65


Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 0.36 ac	Curve Number	= 38
Tc Method	= User	Time of Conc. (Tc)	= 13.5 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

Qp = 0.00 cfs

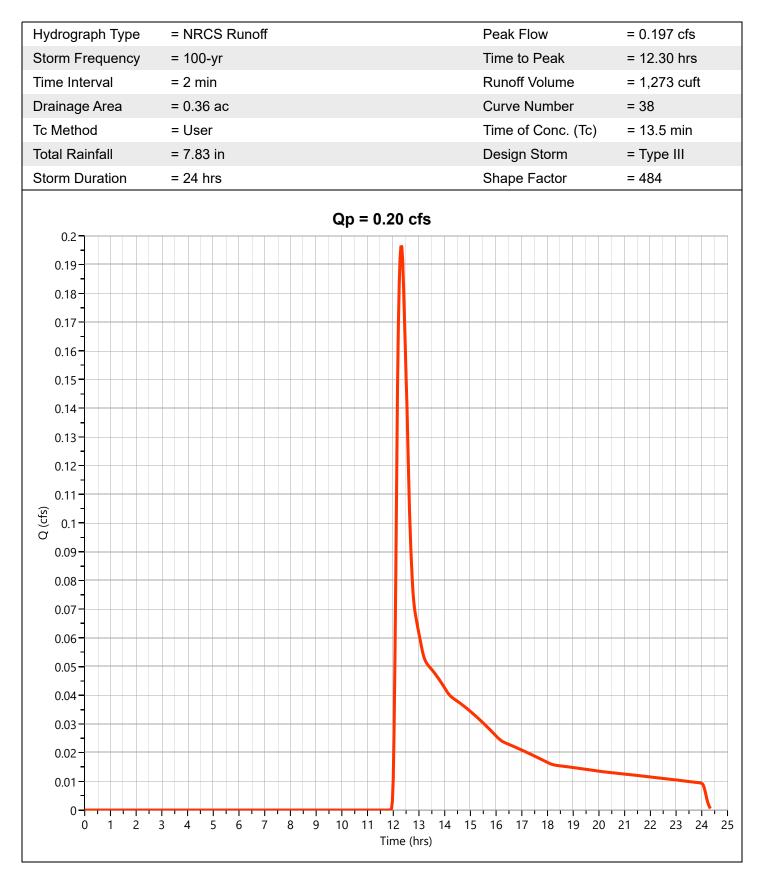
Hydrology Studio v 3.0.0.29

Subcatchment P-5B


12-14-2023

Hydrology Studio v 3.0.0.29

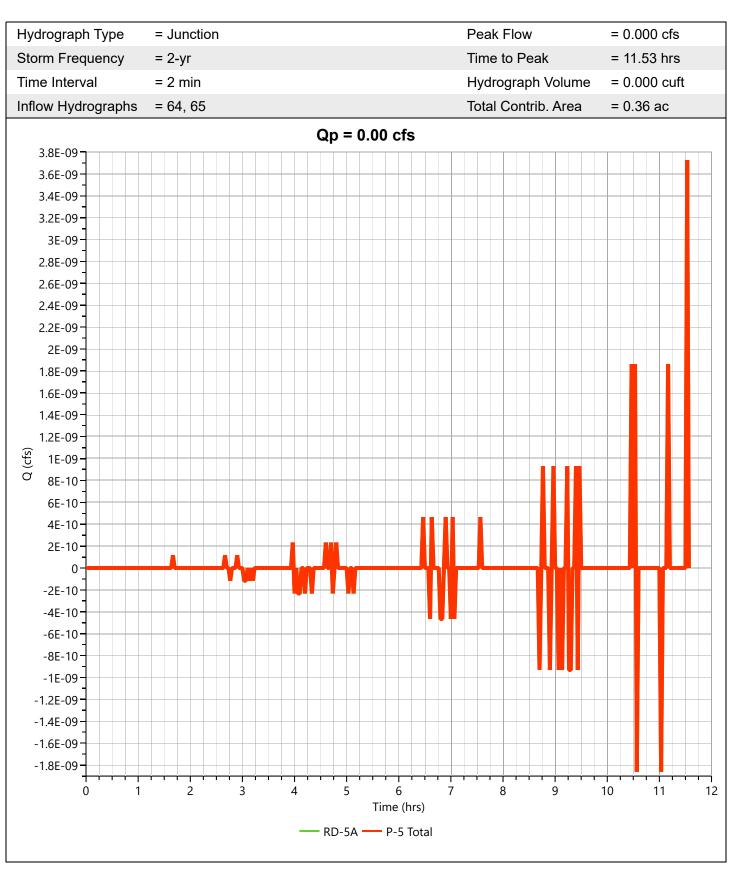
Subcatchment P-5B


12-14-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-5B

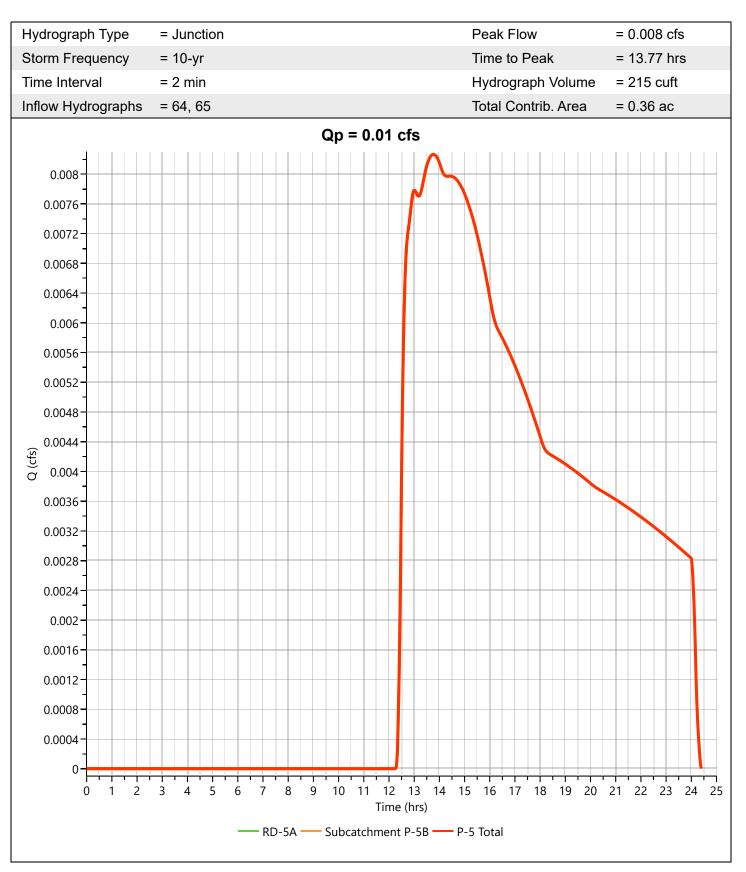
12-14-2023



Hydrology Studio v 3.0.0.29

P-5 Total

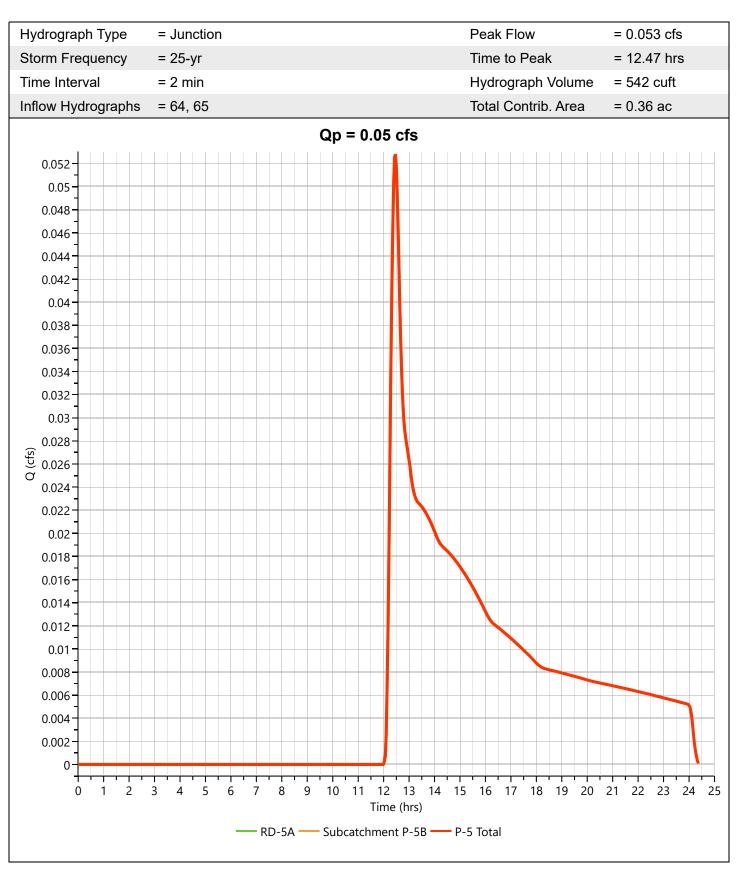
Project Name:



Hydrology Studio v 3.0.0.29

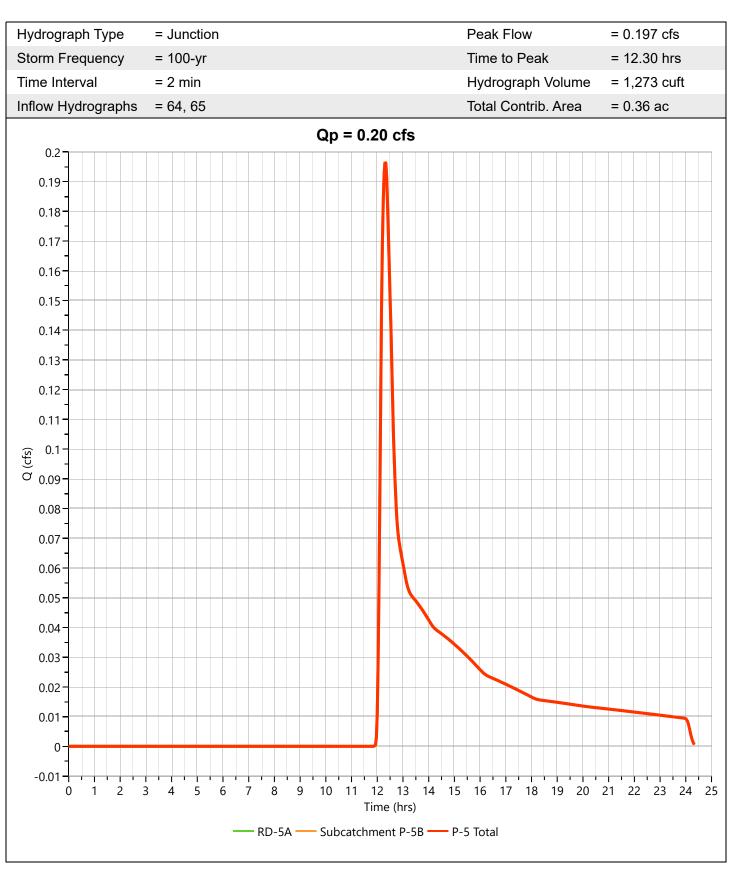
P-5 Total

12-14-2023


Project Name:

Hydrology Studio v 3.0.0.29

P-5 Total


12-14-2023

Hydrology Studio v 3.0.0.29

P-5 Total

12-14-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic			CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.63	61.77
А	Woods - Good Condition	30			0.22	6.48
А	Open Space - Good Condition	39			1.45	56.64
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN s	ource per line.			Totals =	2.30	124.89
CN (weighte	ed) = total product = 124.89 =	54.33	; Use	CN =	54]

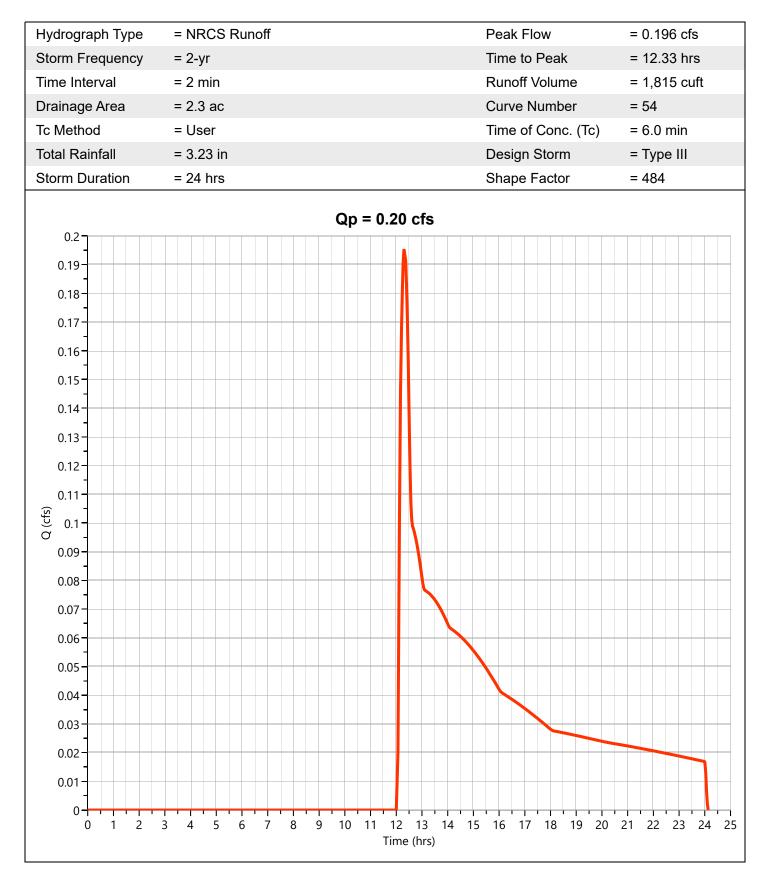
2. Runoff

Frequency......yrRainfall, P (24-hour).....inRunoff, Q.....in(Use P and CN with table 2-1, fig. 2-1,)or eqs. 2-3 and 2-4.)

total area

Storm #2 Storm #3

2	10	100
3.23	5.01	7.83
0.24	0.94	2.60

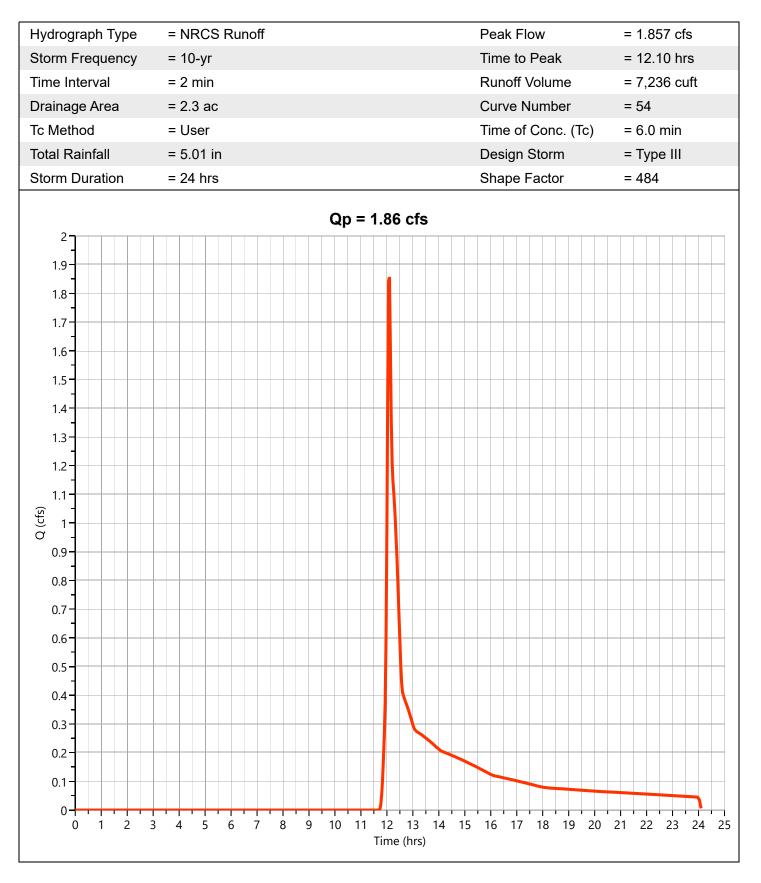

Storm #1

2.30

Hydrology Studio v 3.0.0.29

Subcatchment P-6A

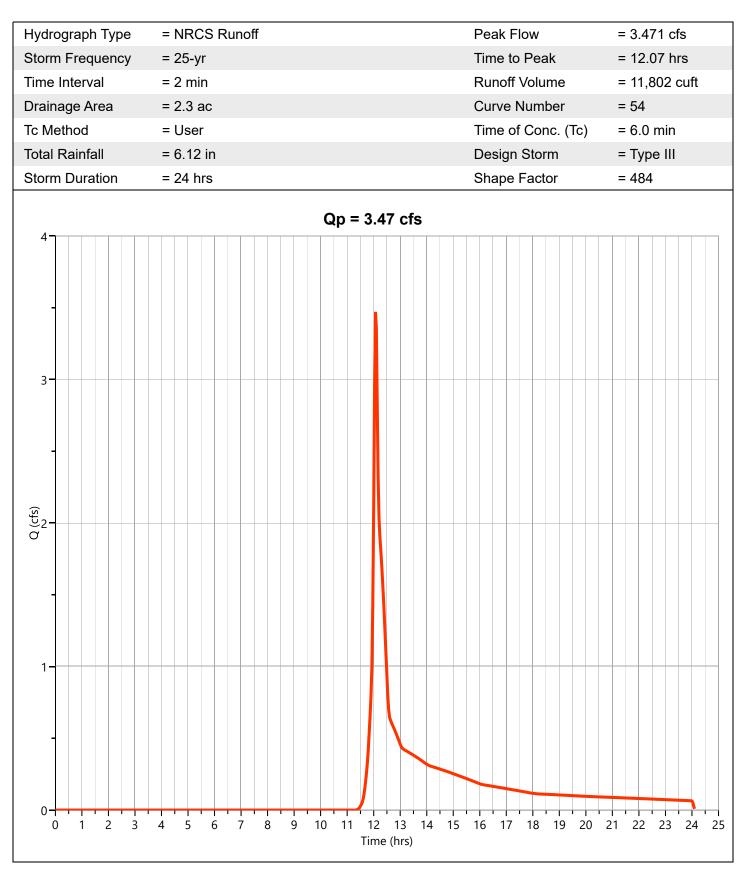
Hyd. No. 68



12-13-2023

Hydrology Studio v 3.0.0.29

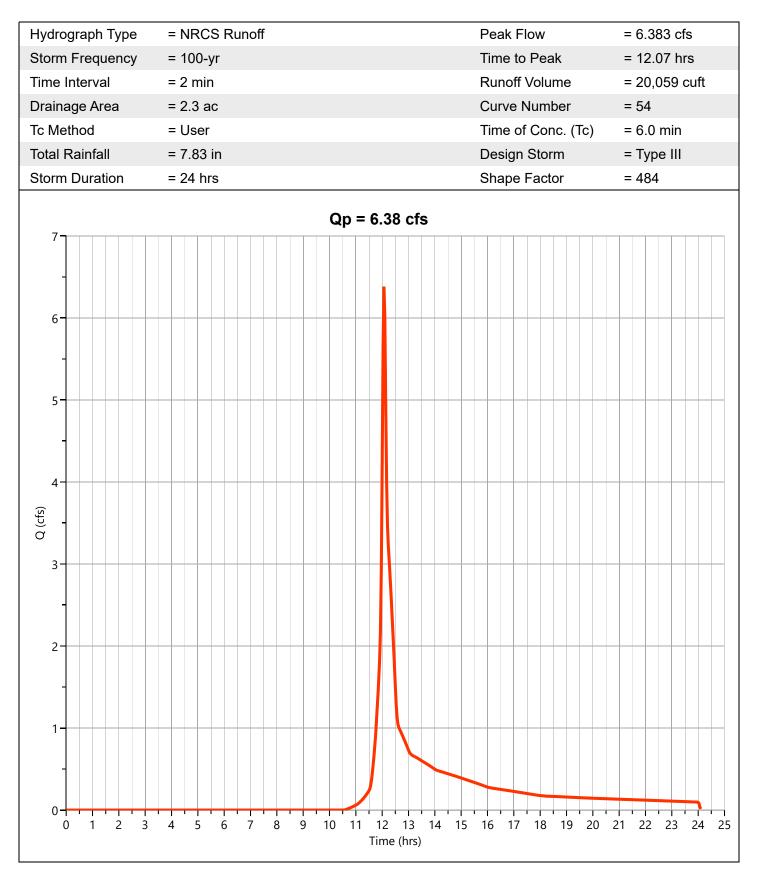
Subcatchment P-6A


12-13-2023

Hydrology Studio v 3.0.0.29

Subcatchment P-6A

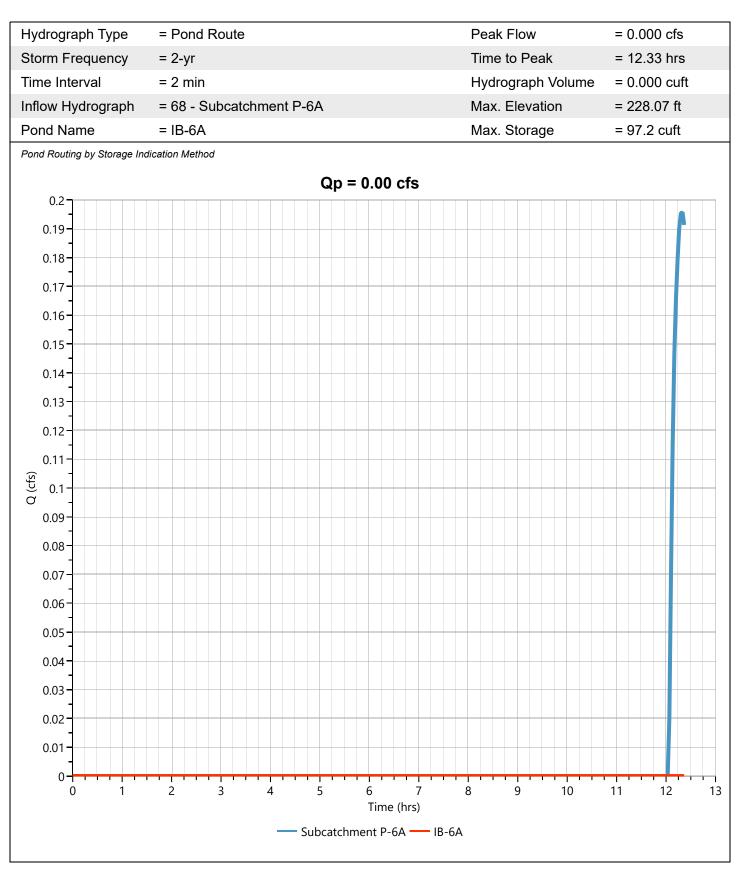
12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment P-6A

12-13-2023


Project Name:

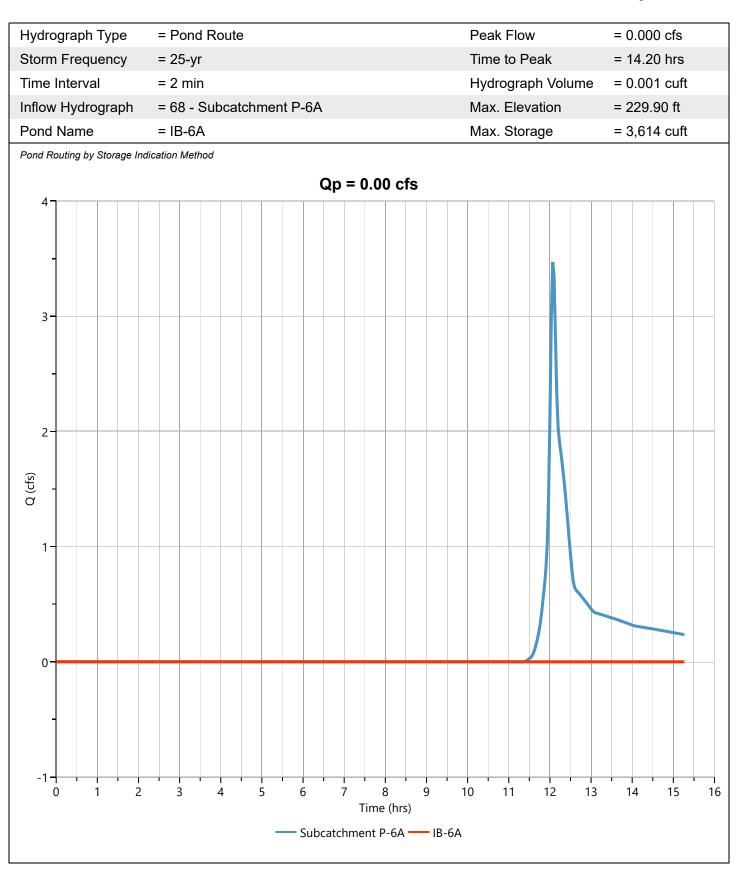
Hydrology Studio v 3.0.0.29

IB-6A

12-13-2023

Hydrology Studio v 3.0.0.29

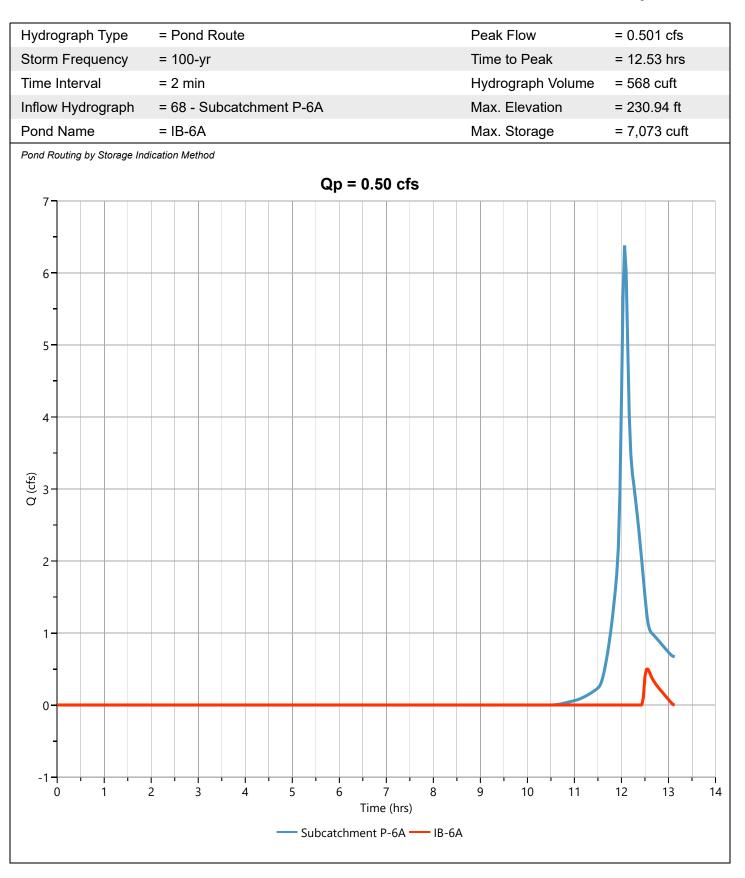
IB-6A


12-13-2023

Hydrograph Type	= Pond Route	Peak Flow	= 0.000 cfs			
Storm Frequency	= 10-yr	Time to Peak	= 12.47 hrs			
Time Interval	= 2 min	Hydrograph Volume	= 0.001 cuft			
nflow Hydrograph	= 68 - Subcatchment P-6A	Max. Elevation	= 229.14 ft			
Pond Name	= IB-6A	Max. Storage	= 1,796 cuft			
Pond Routing by Storage In	dication Method					
	Qp = 0.00 cfs					
2						
1.9						
1.8						
1.7						
1.6						
-						
-						
1.4						
1.3						
1.2						
1.1						
Ct2) 1						
0.9						
0.8						
0.7						
-						
0.6-						
0.5						
0.4						
0.3			$+$ \downarrow $+$ $+$			
0.2						
0.1						
0						
0 1	2 3 4 5 6 7 8 Time (hrs)	9 10 11 12	13 14 1			
	—— Subcatchment P-6A —	- IB-6A				

Hydrology Studio v 3.0.0.29

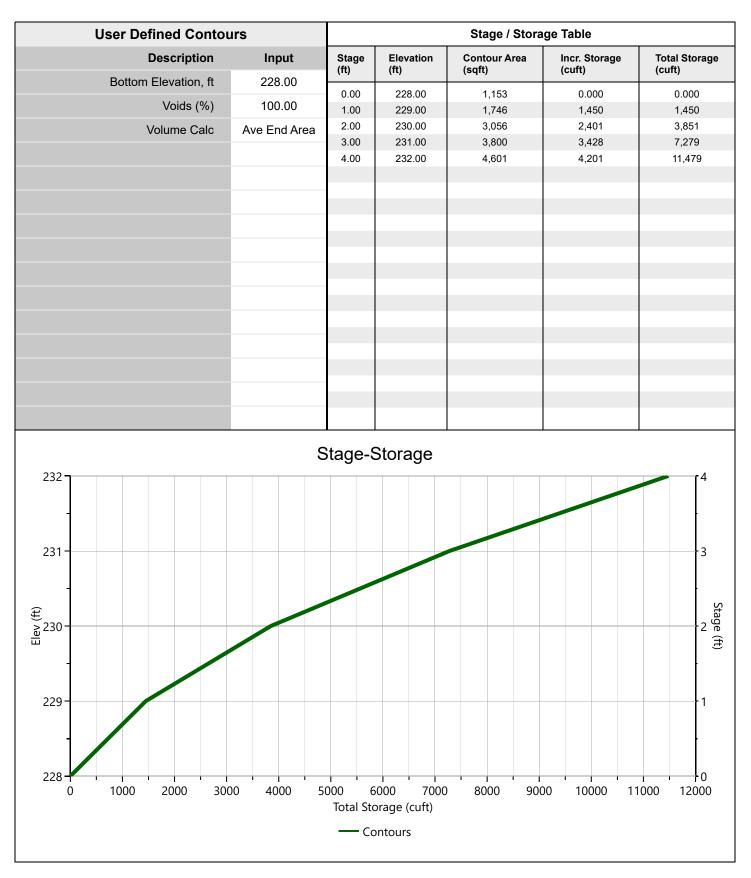
IB-6A


12-13-2023

Hydrology Studio v 3.0.0.29

IB-6A

12-13-2023

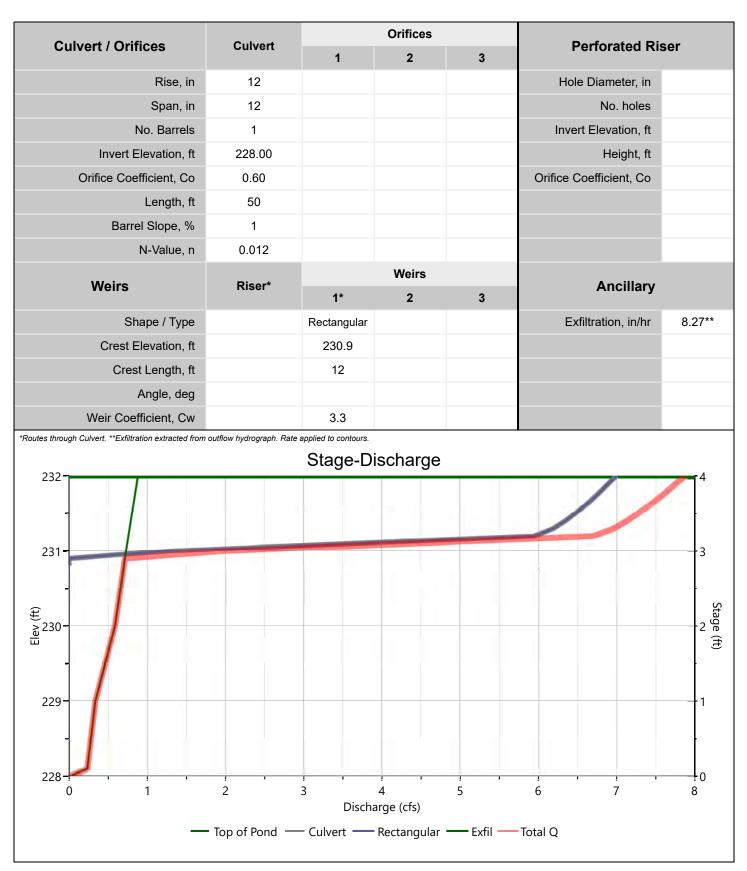

Hydrology Studio v 3.0.0.29

IB-6A

Project Name:

12-13-2023

Stage-Storage



Hydrology Studio v 3.0.0.29

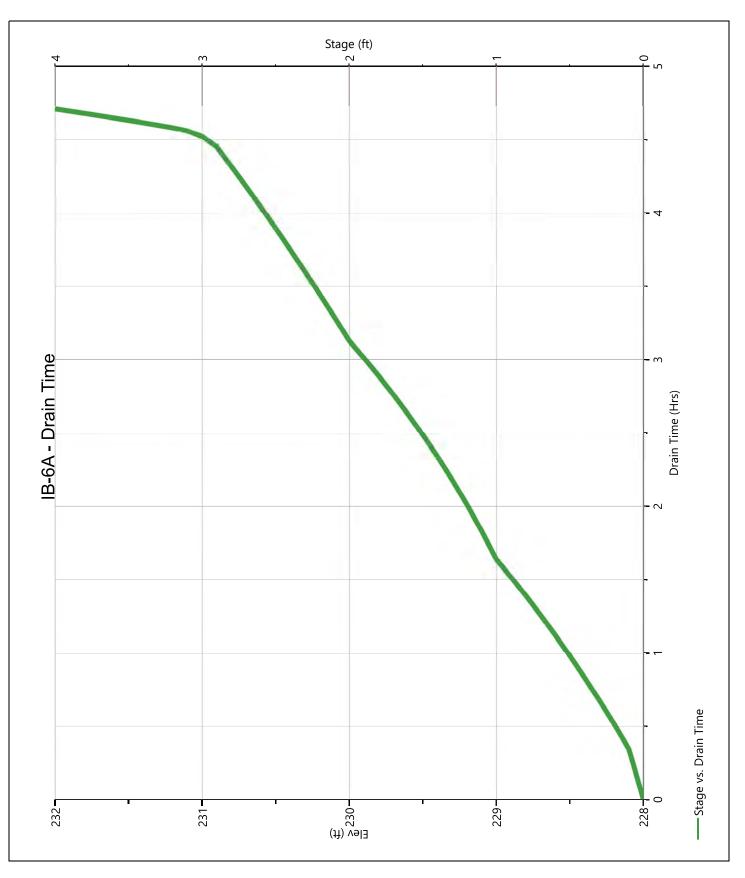
IB-6A

12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

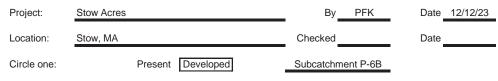
IB-6A


Stage-Storage-Discharge Summary

12-13-2023

Hydrology Studio v 3.0.0.29

IB-6A


Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and	er type, treatment, and				Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.00	0.00
A	Woods - Good Condition	30			0.78	23.36
A	Open Space - Good Condition	39			2.13	83.00
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
с	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	source per line.			Totals =	2.91	106.35

106.35 =

Storm #3

100

7.83

0.88

2.91

Storm #2

10

5.01

0.13

=

Storm #1

2 3.23

0.00

36.59;

Use CN =

37

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

	Worksheet 3: Time of Concentra	ation (Tc) or trav	el time (Tt)		SM-	6781
Project:	Stow Acres		Ву	PFK	Date 12/	12/2023
Location:	Stow, MA		Checked		Date	
Circle one: Circle one:	Present Develop Tc Tt	bed through subarea	Subcatch	ment P-6B		
Sheet flow	(Applicable to Tc only)		Segment ID	A-B		
1. Surface	Description (table 3-1)			Wooded		
2. Manning	s roughness coeff., n (table 3-1)			0.6		
3. Flow len	gth, L (total L <= 300 ft)		ft	50		
4. Two-yr 2	4-hr rainfall, P2		in	3.1		
5. Land Slo	ope, s		ft/ft	0.040		
6. Tt = 0.00	07 (nL)^0.8 / (P2^0.5 s^0.4)	Compute T	t hr	0.22		0.22
Shallow co	ncentrated Flow		Segment ID	B-C		
7. Surface	Description (paved or unpaved)			UNPAVED		
8. Flow Ler	ngth, L		ft	80		
9. Waterco	urse slope, s		ft/ft	0.02		
10. Averag	e Velocity, V (figure 3-1)		ft/s	2.28		
11. Tt = L /	3600V	Compute T	thr	0.01		0.01
Channel flo	W		Segment ID			
 13. Wetted 14. Hydrau 15. Channe 16. Mannin 	sectional flow area, a perimeter, pw lic radius, r=a/wp el Slope, s g's roughness coeff., n 9 r^2/3 s^1/2 / n	Compute r Compute V	ft/ft			
18. Flow le	-		ft			
19. Tt = L /	3600V	Compute T	thr			0
20. Waters	hed or subarea Tc or Tt (add Tt in	i steps 6, 11, an	d 19)		hr min	0.23 13.7

(210-VI-TR-55, Second Ed., June 1986)

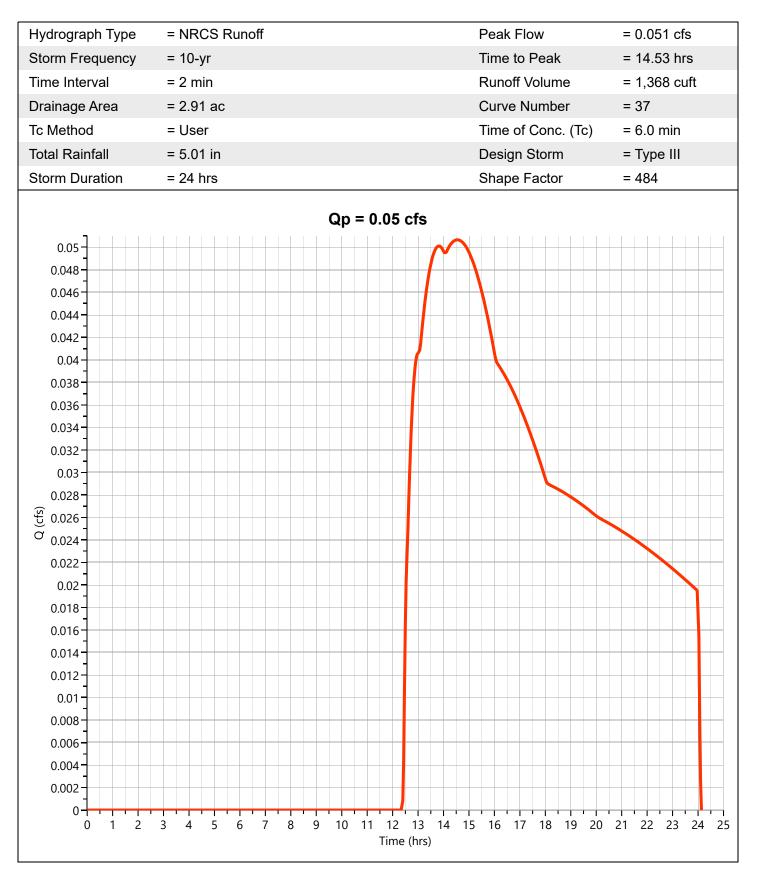
D-3

Hydrology Studio v 3.0.0.29

Subcatchment P-6B

12-13-2023

Hyd. No. 70

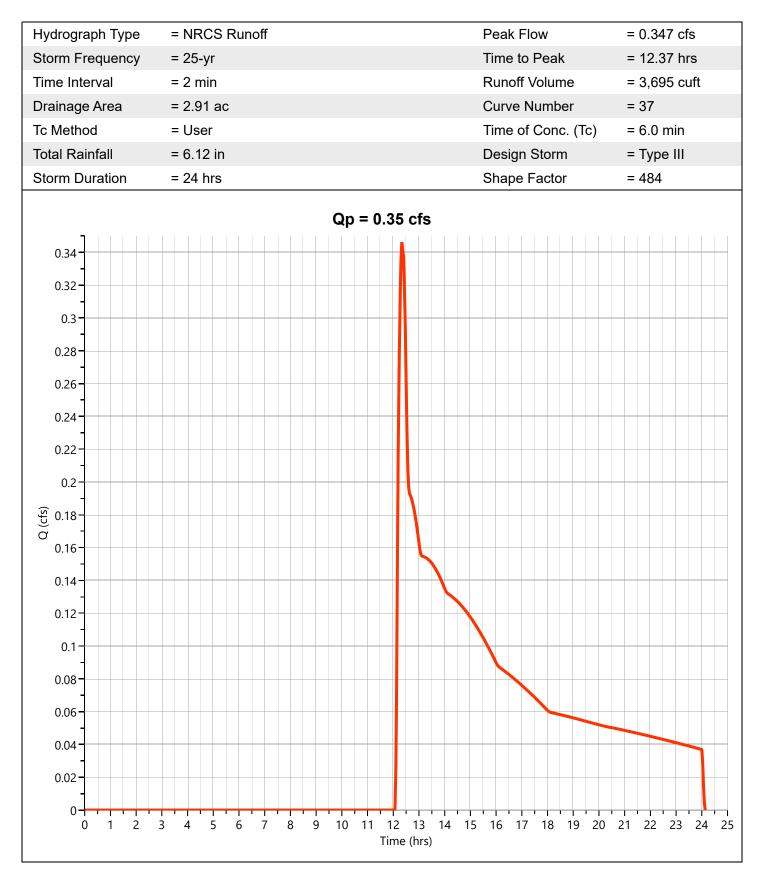

Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.000 cfs
Storm Frequency	= 2-yr	Time to Peak	= 0.00 hrs
Time Interval	= 2 min	Runoff Volume	= 0.000 cuft
Drainage Area	= 2.91 ac	Curve Number	= 37
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min
Total Rainfall	= 3.23 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484

Qp = 0.00 cfs

Hydrology Studio v 3.0.0.29

Subcatchment P-6B

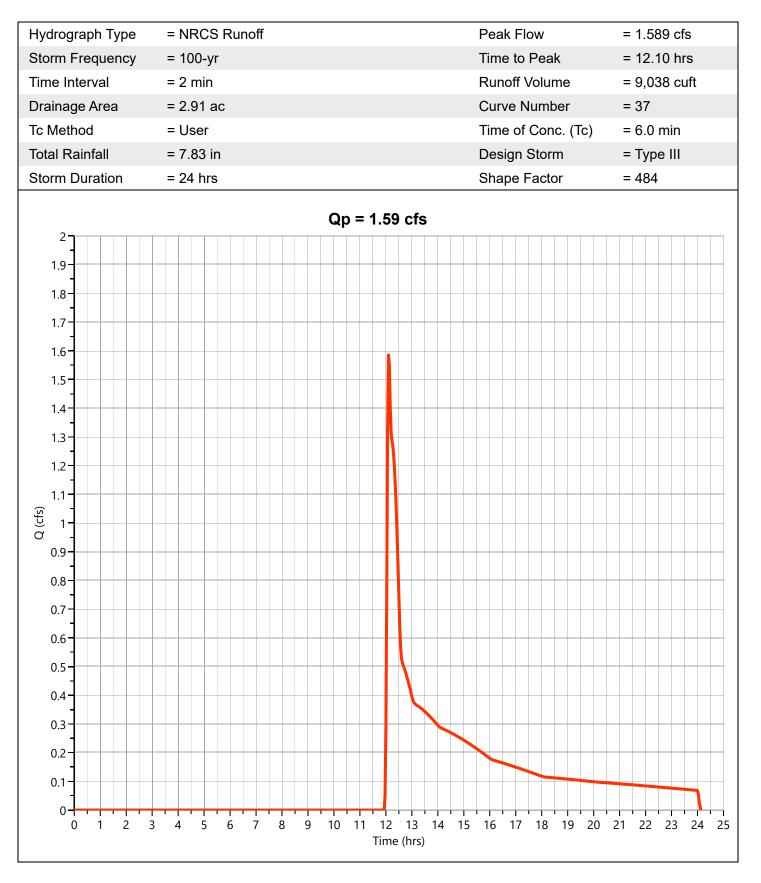
12-13-2023



Hydrology Studio v 3.0.0.29

Subcatchment P-6B

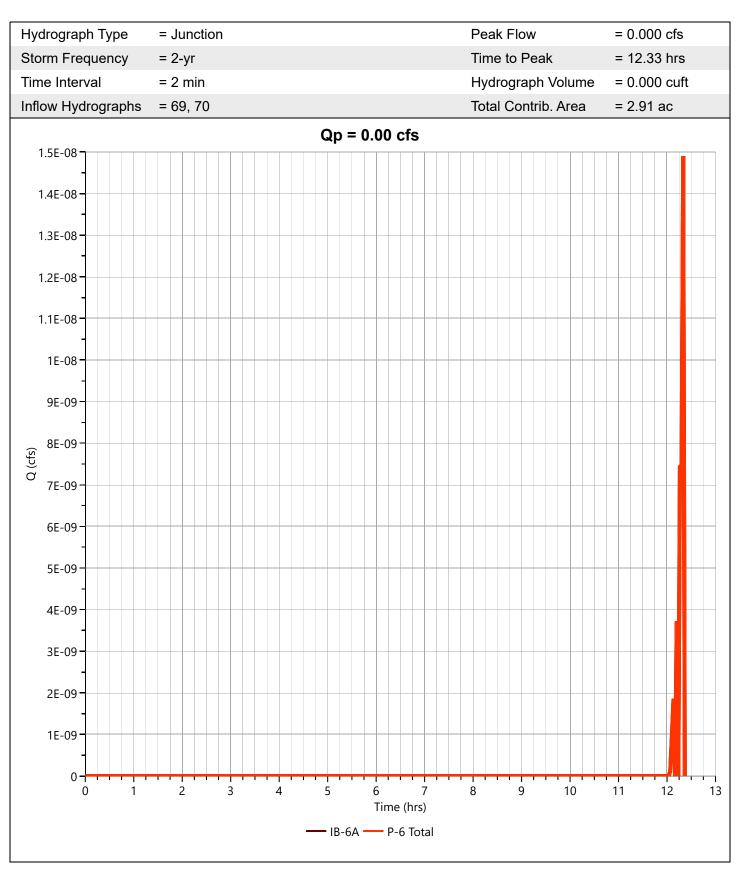
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

Subcatchment P-6B

12-13-2023

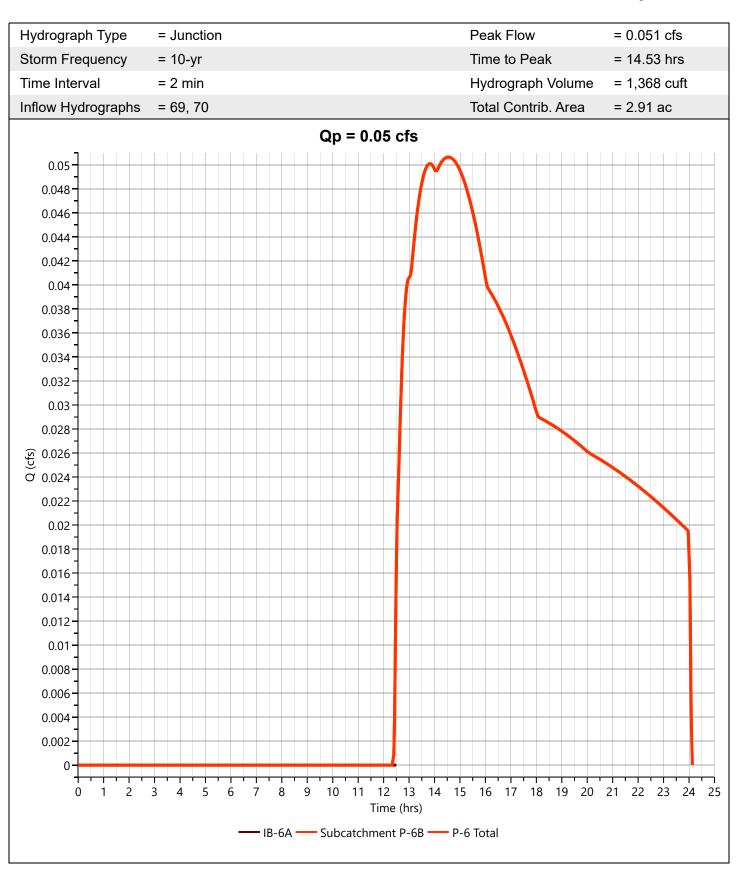


Hydrology Studio v 3.0.0.29

P-6 Total

12-13-2023

Project Name:

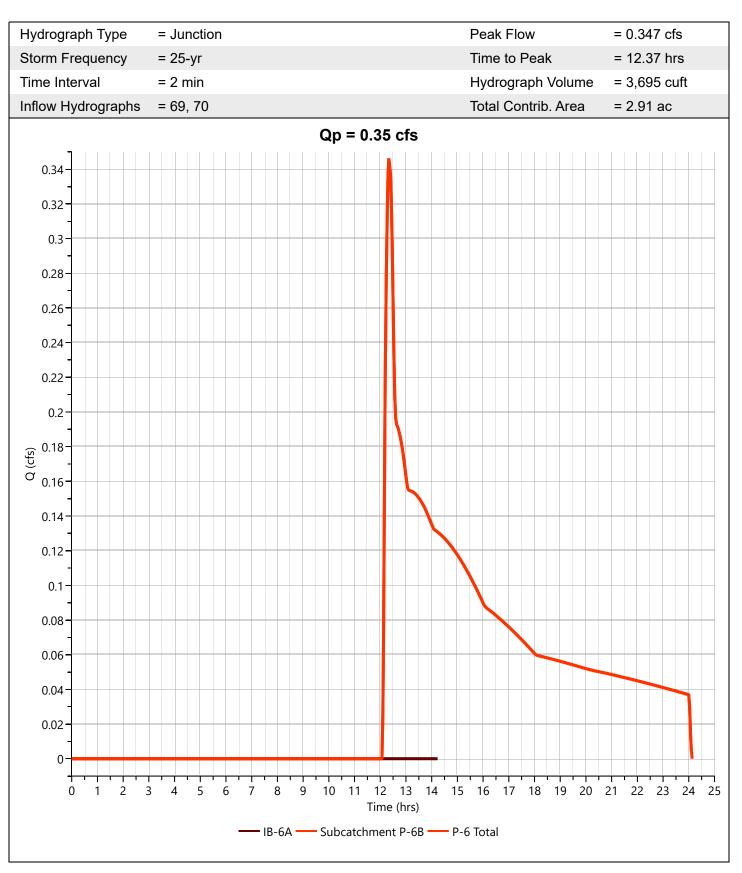


Hydrology Studio v 3.0.0.29

P-6 Total

12-13-2023

Project Name:

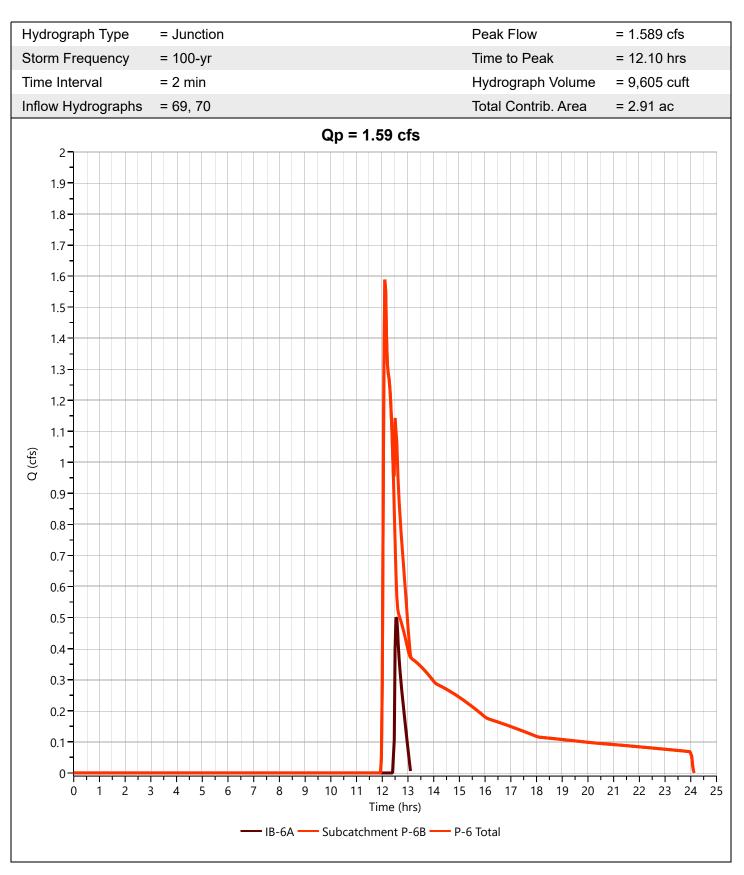


Hydrology Studio v 3.0.0.29

P-6 Total

12-13-2023

Project Name:



Hydrology Studio v 3.0.0.29

P-6 Total

12-13-2023

Project Name:

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and	CN 1/				Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.03	2.94
А	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one	e CN source per line.			Totals =	0.03	2.94

2.94

0.03

Storm #2

10

5.01

4.77

=

Storm #3

100

7.83

7.59

=

Storm #1

2 3.23

3.00

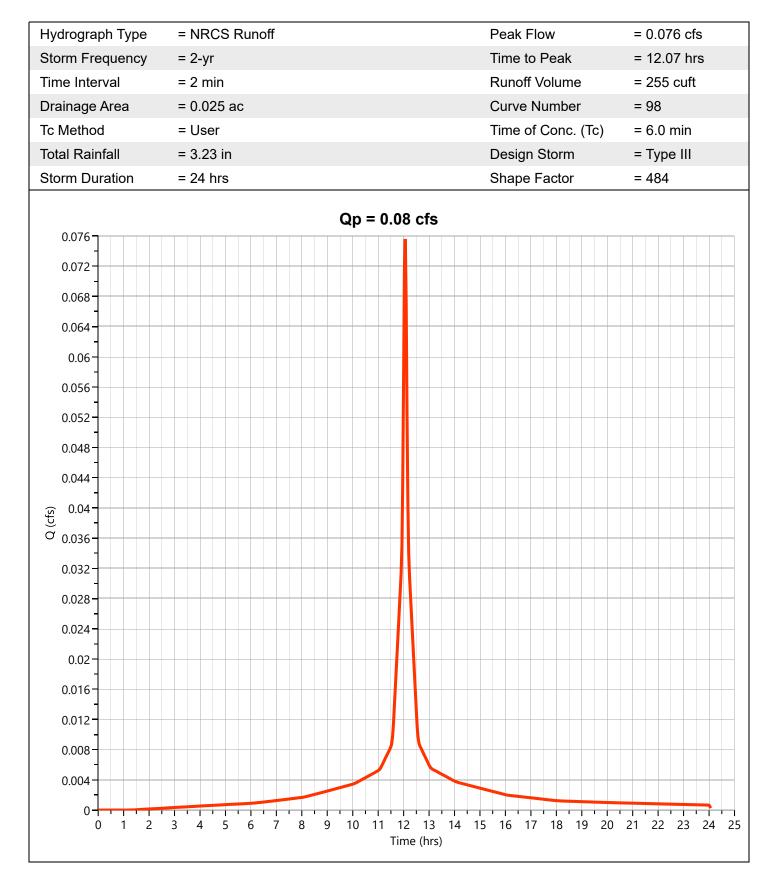
98.00;

98

Use CN =

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,)	in

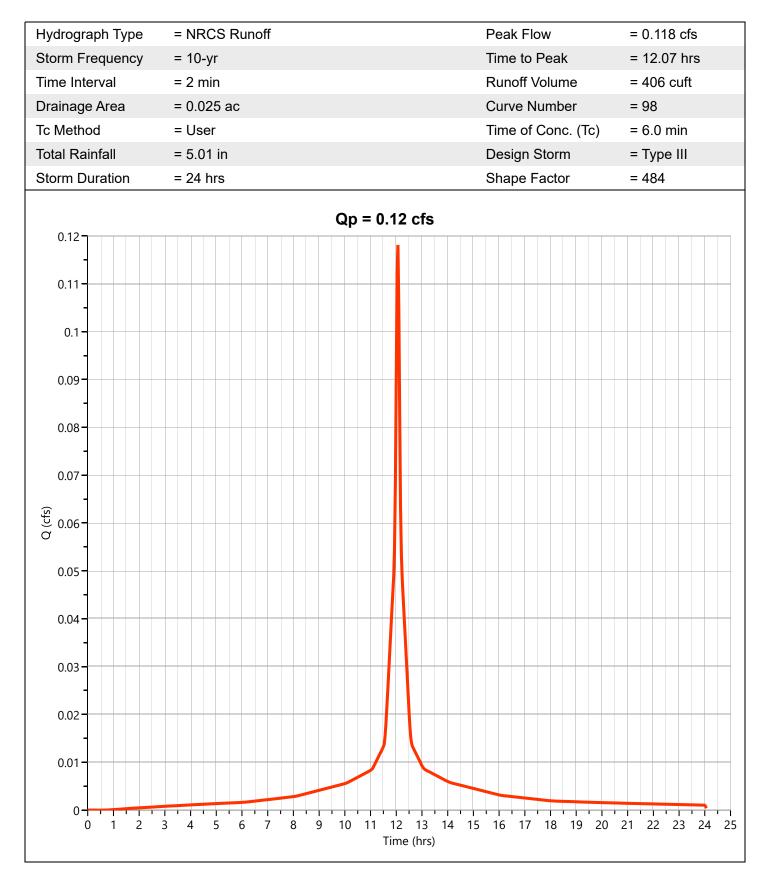

or eqs. 2-3 and 2-4.)

Hydrology Studio v 3.0.0.29

Roof Drywell A

Project Name:

12-13-2023

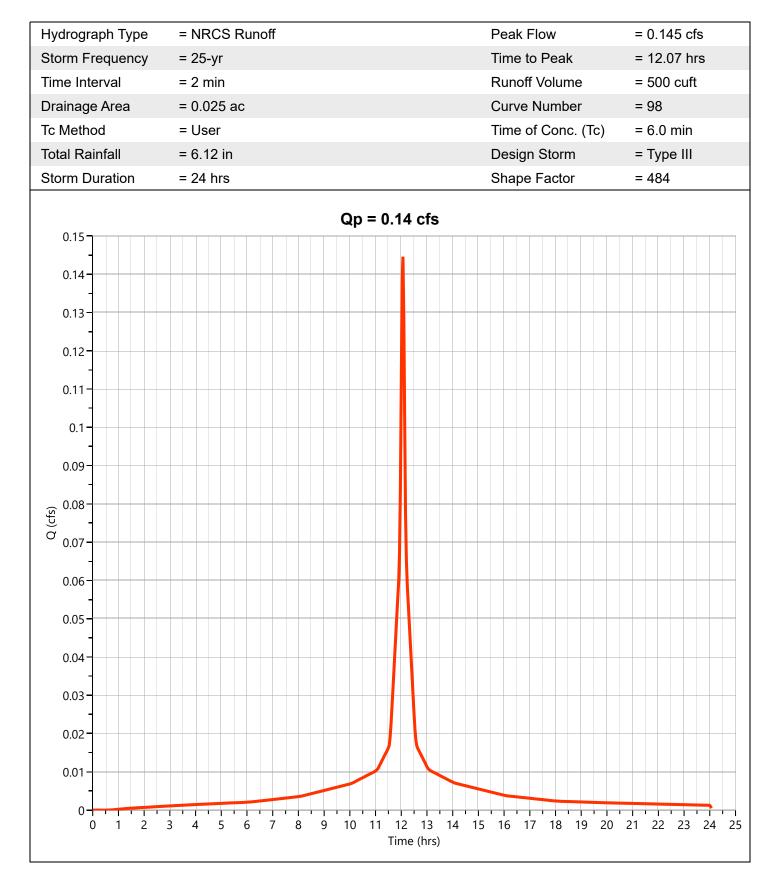


Hydrology Studio v 3.0.0.29

Roof Drywell A

12-13-2023

Project Name:

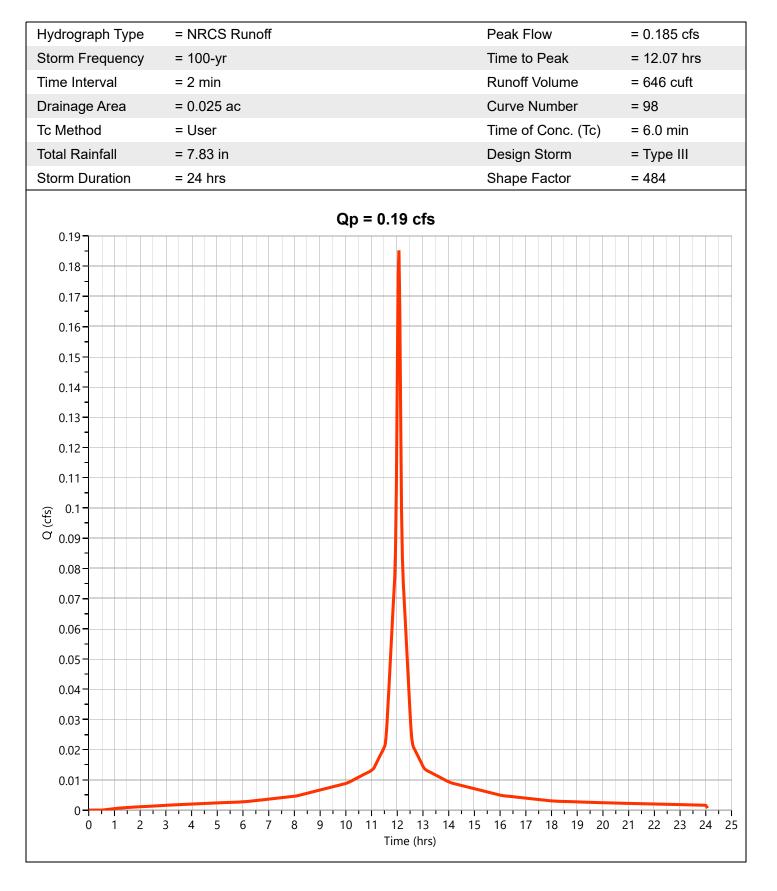


Hydrology Studio v 3.0.0.29

Roof Drywell A

Project Name:

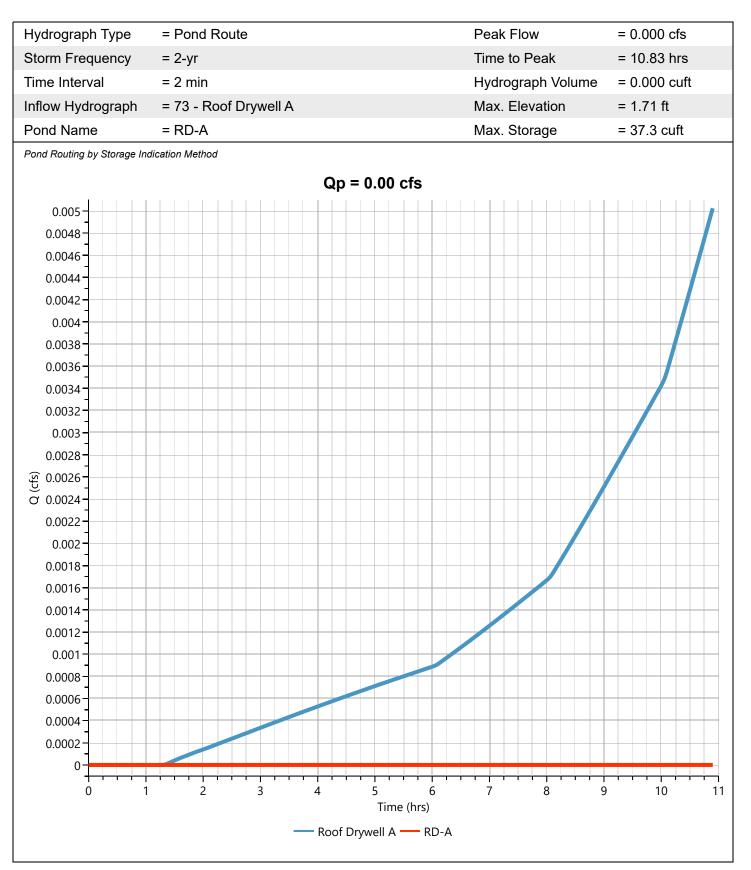
12-13-2023



Hydrology Studio v 3.0.0.29

Roof Drywell A

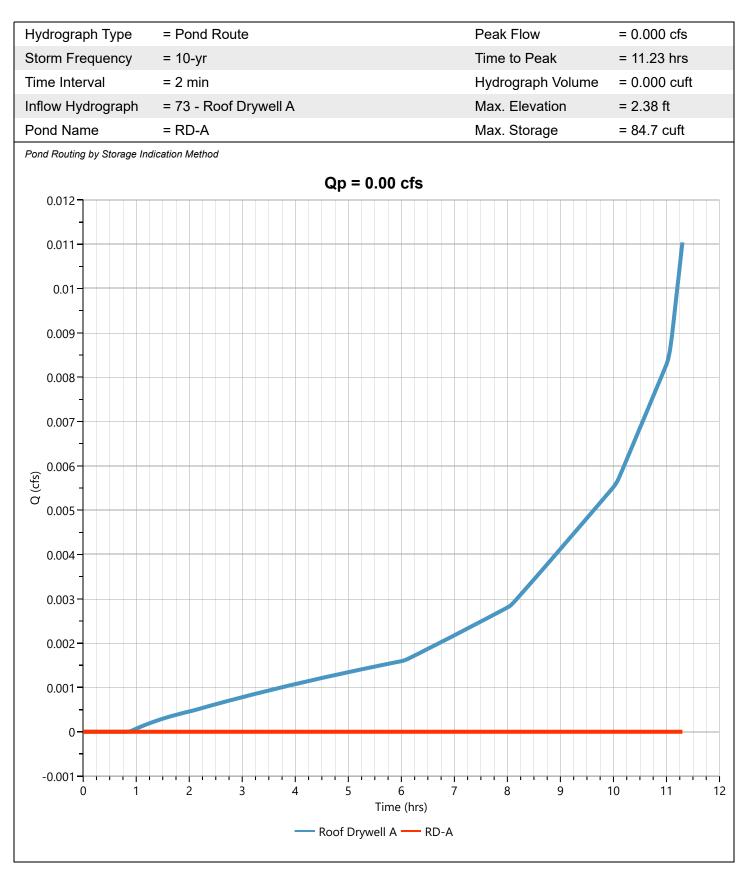
12-13-2023


Project Name:

Hydrology Studio v 3.0.0.29

RD-A

12-13-2023

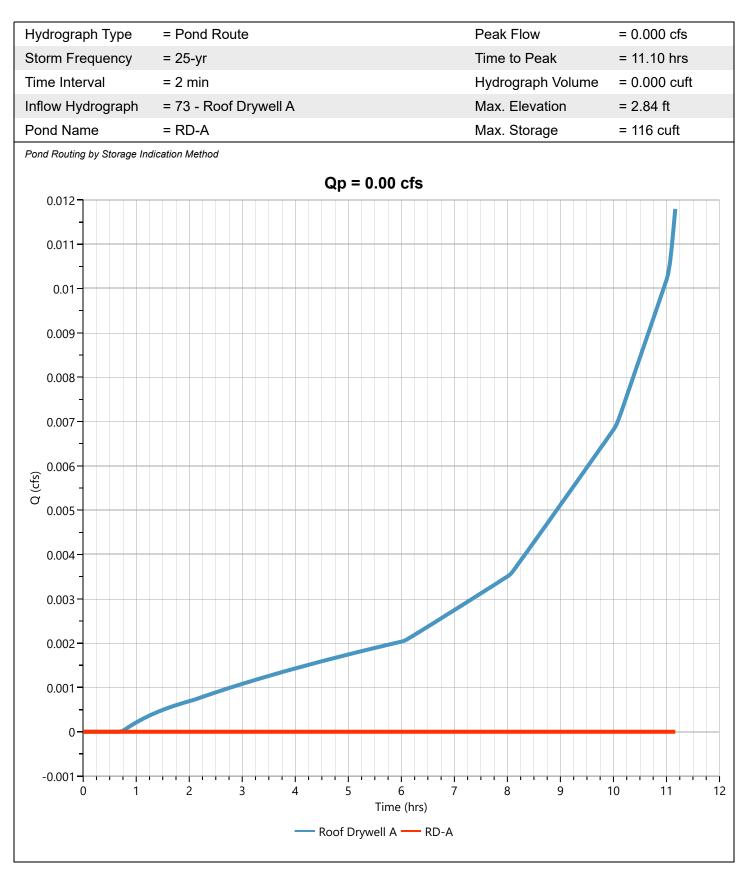


Hydrology Studio v 3.0.0.29

RD-A

12-13-2023

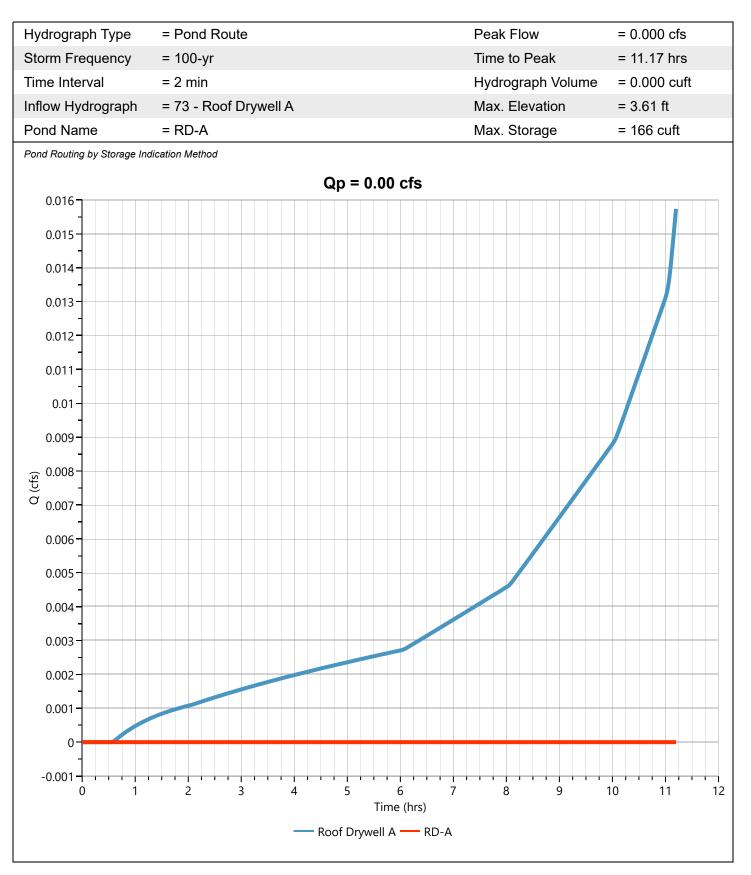
Hyd. No. 74



Project Name:

Hydrology Studio v 3.0.0.29

RD-A


12-13-2023

Hydrology Studio v 3.0.0.29

RD-A

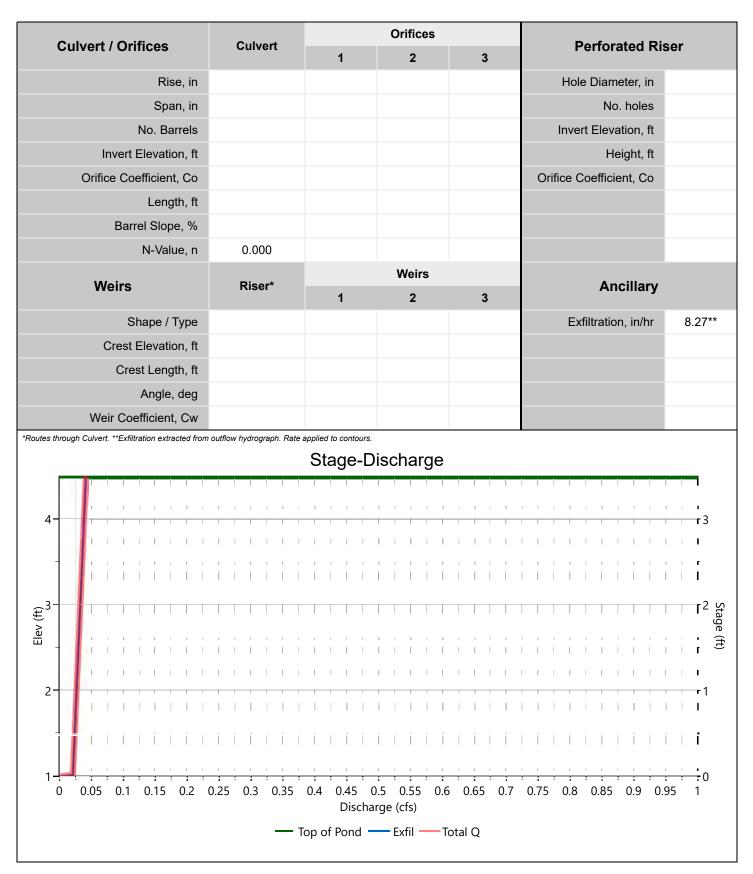
12-13-2023

Hydrology Studio v 3.0.0.29

RD-A

12-13-2023

Stage-Storage


	mber	Stage / Storage Table						
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storage (cuft)		
Chamber Height, in	30							
Chamber Shape	Arch	0.0	1.00 1.18	110 110	0.000 7.69	0.000 7.69		
Chamber Width, in	51	4.2	1.35	110	7.69	15.4		
		6.3	1.53	110	8.33	23.7		
Installed Length, ft	7.12	8.4	1.70	110	12.6	36.3		
No. Chambers	2	10.5	1.88	110	12.6	48.9		
	91.8	12.6	2.05	110	12.5	61.4		
Bare Chamber Stor, cuft	91.8	14.7	2.23	110	12.4	73.8		
No. Rows	1	16.8	2.40	110	12.3	86.1		
Space Between Rows, in	6	18.9	2.58	110	12.2	98.3		
		21.0	2.75	110	12.0	110		
Stone Above, in	6	23.1 25.2	2.93 3.10	110 110	11.8 11.6	122 134		
Stone Below, in	6	27.3	3.28	110	11.3	145		
Stone Sides, in	12	29.4	3.45	110	11.0	156		
		31.5	3.63	110	10.5	167		
Stone Ends, in	12	33.6	3.80	110	9.96	177		
Encasement Voids, %	40.00	35.7	3.97	110	9.10	186		
	1.00	37.8	4.15	110	7.86	193		
Encasement Bottom Elevation, ft	1.00	39.9 42.0	4.32 4.50	110 110	7.69 7.69	201 209		
		Stane-9	Storage					
5		Olage-	Julage			 4		
4						3		
4						3		
4						3		
						·		
3-						2		
3-						2		
3-						2		
2-								
		90 100						

Hydrology Studio v 3.0.0.29

RD-A

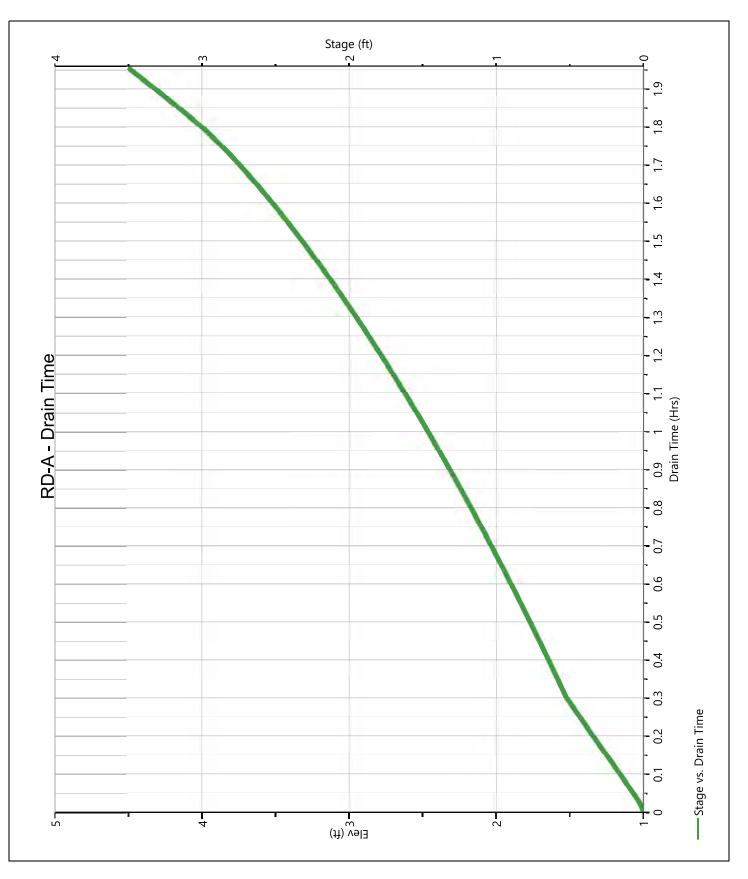
12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

RD-A

Stage-Storage-Discharge Summary


Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs		Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1.00	0.000										0.000		0.000
0.18	1.18	7.69										0.022		0.022
0.35	1.35	15.4										0.023		0.023
0.53	1.53	23.7										0.024		0.024
0.70	1.70	36.3										0.025		0.025
0.88	1.88	48.9										0.026		0.026
1.05	2.05	61.4										0.027		0.027
1.23	2.23	73.8										0.028		0.028
1.40	2.40	86.1										0.029		0.029
1.58	2.58	98.3										0.030		0.030
1.75	2.75	110										0.031		0.031
1.93	2.93	122										0.032		0.032
2.10	3.10	134										0.033		0.033
2.28	3.28	145										0.034		0.034
2.45	3.45	156										0.035		0.035
2.63	3.63	167										0.036		0.036
2.80	3.80	177										0.037		0.037
2.97	3.97	186										0.038		0.038
3.15	4.15	193										0.039		0.039
3.32	4.32	201										0.040		0.040
3.50	4.50	209										0.041		0.041
														l
														l

12-13-2023

Hydrology Studio v 3.0.0.29

RD-A

Pond Drawdown

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/			Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.058	5.73
A	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.00	0.00
с	Woods - Good Condition	70			0.00	0.00
с	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
A	Gravel	76			0.00	0.00
A	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one CN	source per line.			Totals =	0.058	5.73
CN (weight	ted) = total product = 5.73 =	98.00	; Use	CN =	98]

Storm #1

2 3.23

3.00

2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

Storm #3

100

7.83

7.59

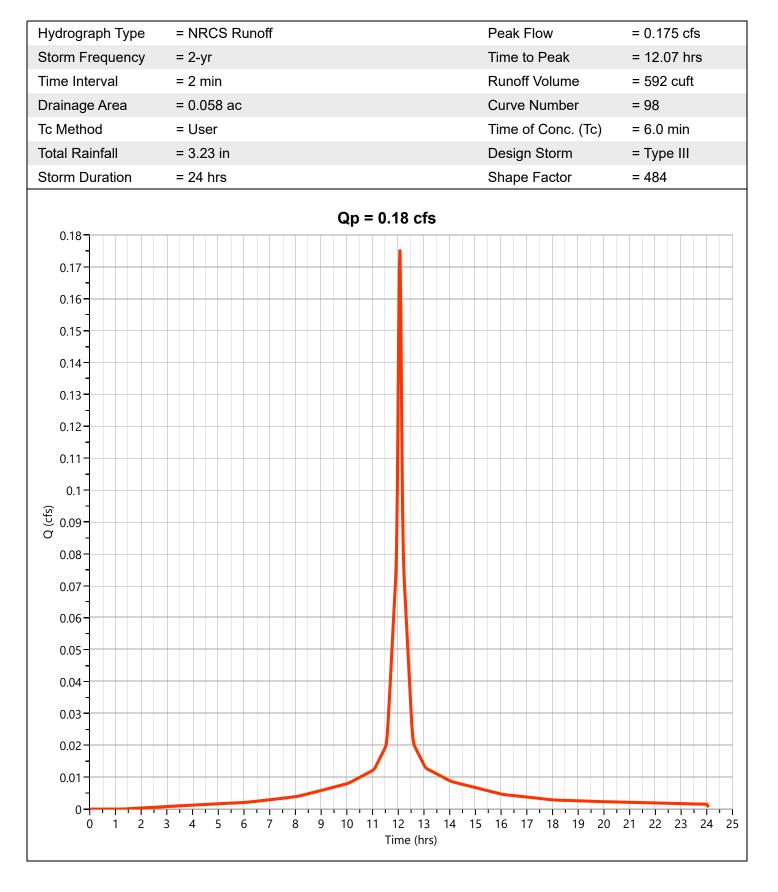
0.06

Storm #2

10

5.01

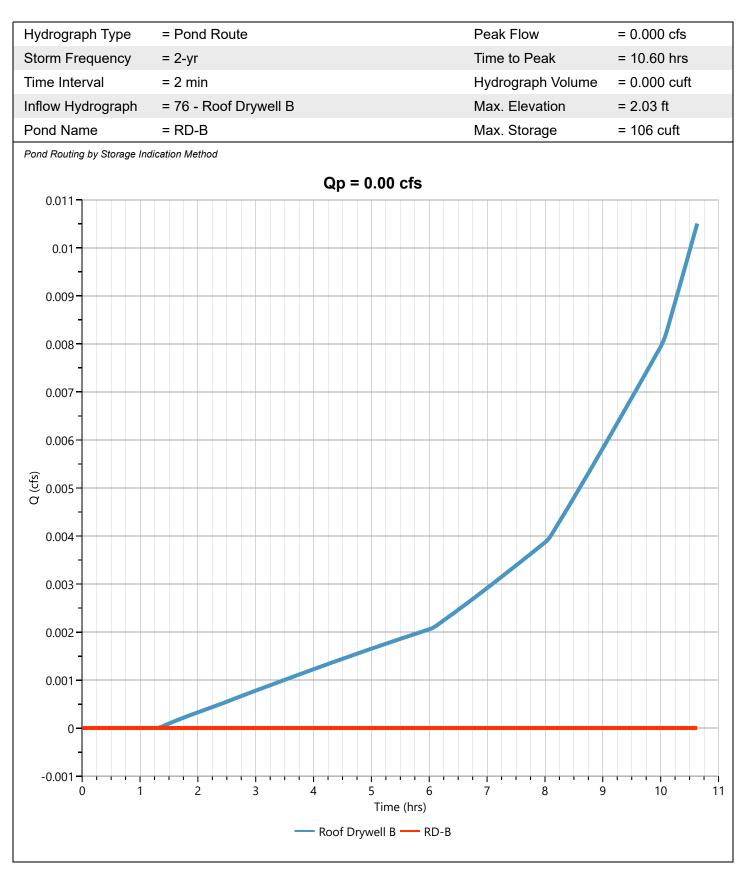
4.77


Hydrology Studio v 3.0.0.29

Roof Drywell B

Project Name:

12-13-2023



Hydrology Studio v 3.0.0.29

RD-B

12-13-2023

Hyd. No. 77

Project Name:

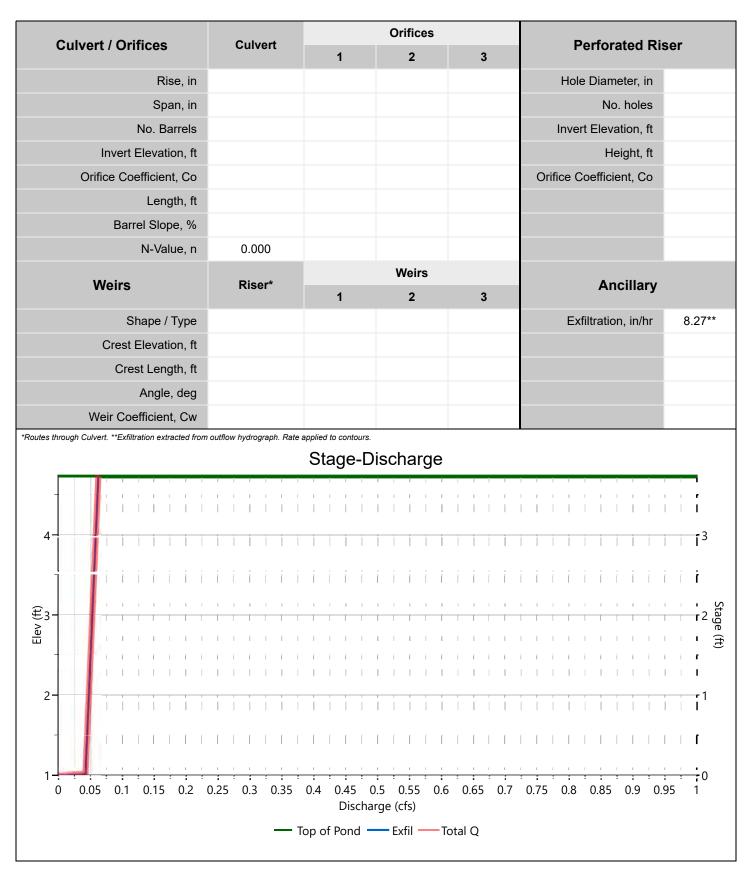
Hydrology Studio v 3.0.0.29

RD-B

12-13-2023

Stage-Storage

StormTech® SC-740™ Ch		Stage / Storage Table				
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storag (cuft)
Chamber Height, in	30					
Chamber Shape	Arch	0.0	1.00 1.19	220 220	0.000 16.5	0.000
· · ·		4.5	1.19	220	16.5	33.0
Chamber Width, in	51	6.8	1.56	220	16.5	49.4
Installed Length, ft	7.12	9.0	1.75	220	16.5	65.9
No. Chambers	4	11.3	1.94	220	26.9	92.8
		13.5	2.13	220	26.9	120
Bare Chamber Stor, cuft	184	15.8	2.31	220	26.8	146
No. Rows	2	18.0	2.50	220	26.6	173
Creas Daturan Davis in	04	20.3	2.69	220	26.4	199
Space Between Rows, in	24	22.5	2.88	220	26.0	225
Stone Above, in	6	24.8	3.06	220	25.6	251
Stone Below, in	9	27.0	3.25	220	25.2	276
		29.3	3.44	220	24.6	301
Stone Sides, in	12	31.5	3.63	220	23.8	325
Stone Ends, in	12	33.8 36.0	3.81 4.00	220 220	22.9 21.8	348 369
		38.3	4.00	220	20.1	389
Encasement Voids, %	40.00	40.5	4.38	220	17.2	407
ncasement Bottom Elevation, ft	1.00	42.8	4.56	220	16.5	423
		45.0	4.75	220	16.5	440
						4
-						
						5
-						
						2
\neg						
2						1
		i.	· ·			
0 50 100	150	200	250	300	350 4	00


----- UG Chambers ----- Top of Pond ----- Top of Chamber ----- Invert of Chamber ----- Top Stone ----- Bottom Stone

Hydrology Studio v 3.0.0.29

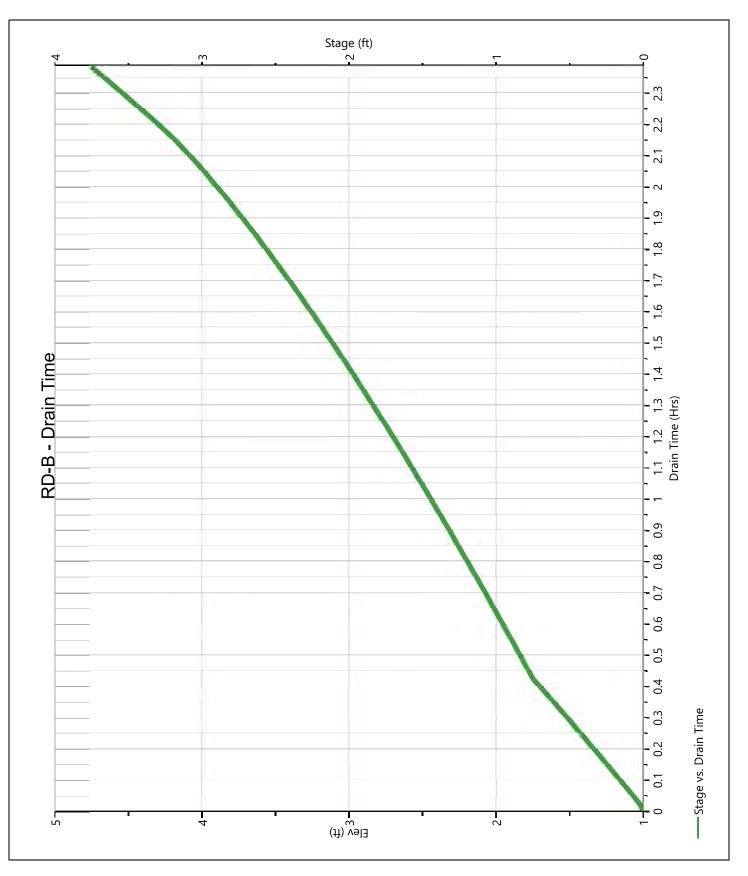
RD-B

12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

RD-B


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	;	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1.00	0.000										0.000		0.000
0.19	1.19	16.5										0.043		0.043
0.38	1.38	33.0										0.044		0.044
0.56	1.56	49.4										0.045		0.045
0.75	1.75	65.9										0.046		0.046
0.94	1.94	92.8										0.047		0.047
1.13	2.13	120										0.048		0.048
1.31	2.31	146										0.049		0.049
1.50	2.50	173										0.050		0.050
1.69	2.69	199										0.051		0.051
1.88	2.88	225										0.052		0.052
2.06	3.06	251										0.053		0.053
2.25	3.25	276										0.054		0.054
2.44	3.44	301										0.055		0.055
2.63	3.63	325										0.056		0.056
2.81	3.81	348										0.057		0.057
3.00	4.00	369										0.058		0.058
3.19	4.19	389										0.059		0.059
3.38	4.38	407										0.060		0.060
3.56	4.56	423										0.061		0.061
3.75	4.75	440										0.062		0.062
		1						1					1	i

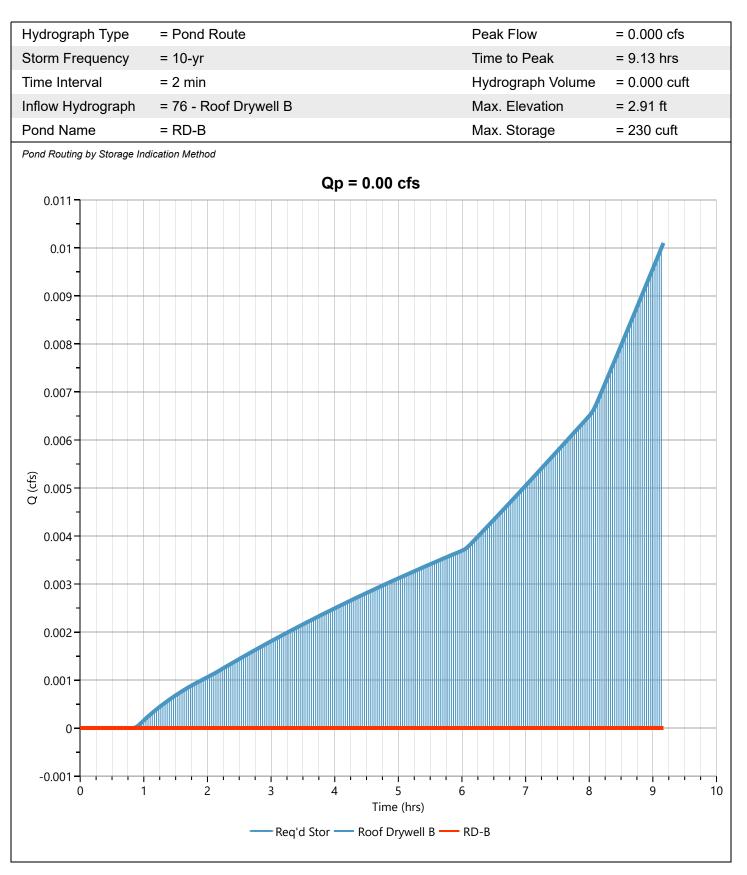
Hydrology Studio v 3.0.0.29

RD-B

Hydrology Studio v 3.0.0.29

Roof Drywell B

Project Name:


Hydrograph Type	= NRCS Runoff	Peak Flow	= 0.274 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.07 hrs
Time Interval	= 2 min	Runoff Volume	= 942 cuft
Drainage Area	= 0.058 ac	Curve Number	= 98
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min
Total Rainfall	= 5.01 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484
	$O_{2} = 0.27$ of a		
0.28	Qp = 0.27 cfs		
0.26			
0.24			
-			
0.22			
-			
0.2			
0.18			
-			
0.16			
(j) 0.14-			
σ			
0.12			
-			
0.1			
0.08			
0.06			
0.04			
0.02			
0 1 2	3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20	21 22 23 24 2
	Time (hrs)		

Hydrology Studio v 3.0.0.29

RD-B

12-13-2023

Hyd. No. 77

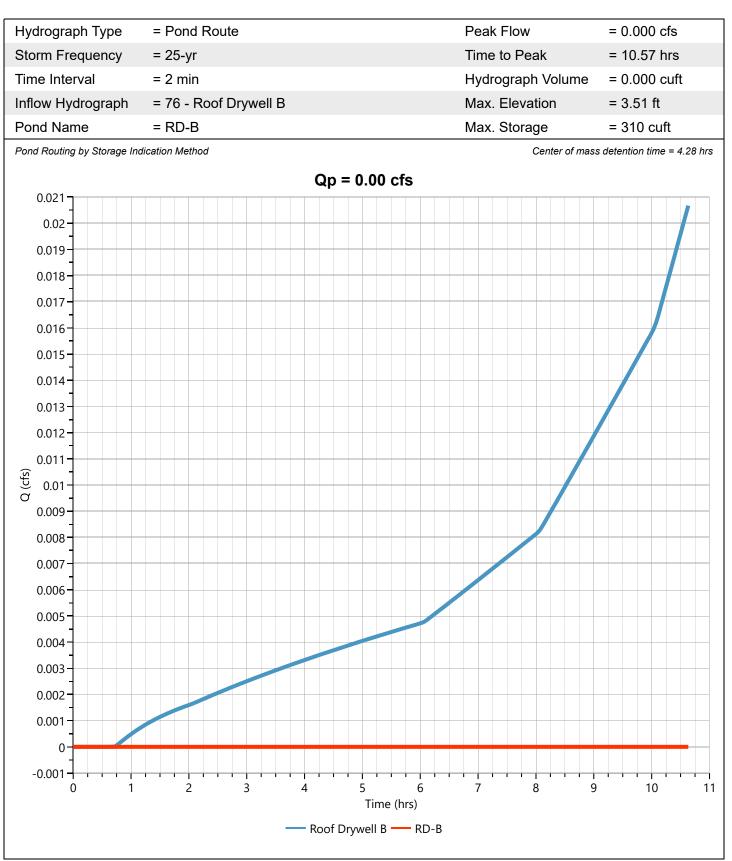
Project Name:

Hydrology Studio v 3.0.0.29

Roof Drywell B

Project Name:

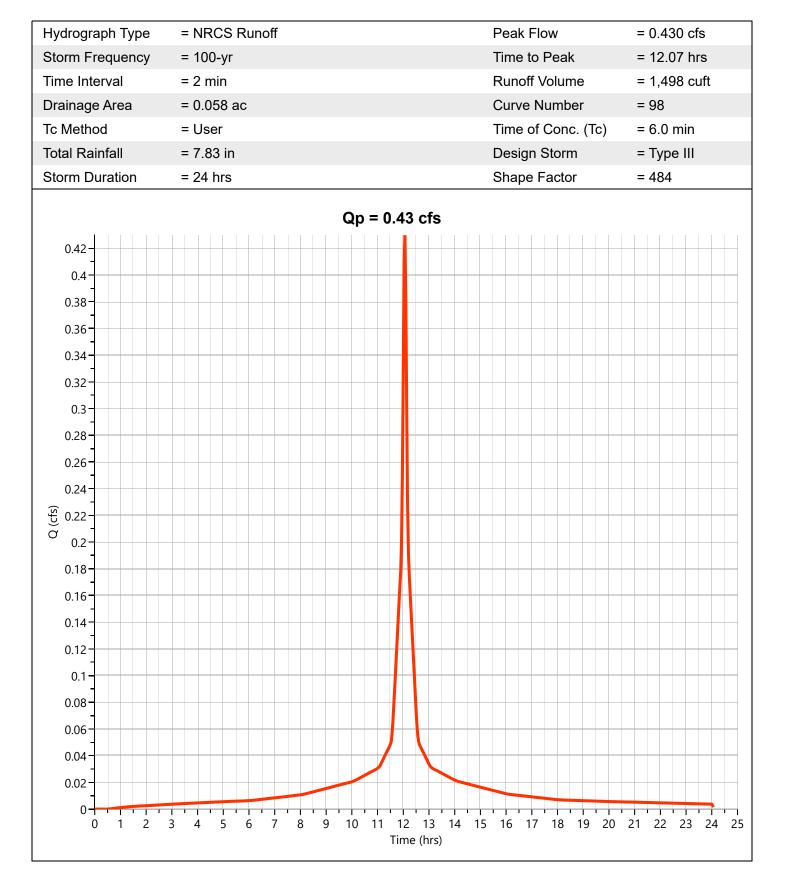
12-13-2023



Storm Frequency Time Interval	= 25-yr		
Time Interval	- 20-yi	Time to Peak	= 12.07 hrs
	= 2 min	Runoff Volume	= 1,161 cuft
Drainage Area	= 0.058 ac	Curve Number	= 98
Tc Method	= User	Time of Conc. (Tc)	= 6.0 min
Total Rainfall	= 6.12 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484
	Qp = 0.34 cfs		
0.34			
0.32			
0.3			
0.28			
0.26			
0.24			
0.22			
0.2			
⊕ 0.18 ⊕			
α _{0.16}			
0.14			
0.12			
0.1-			
0.08-			
0.06			
0.04 -			
0.02			
0 1 2 3			21 22 23 24 25

Hydrology Studio v 3.0.0.29

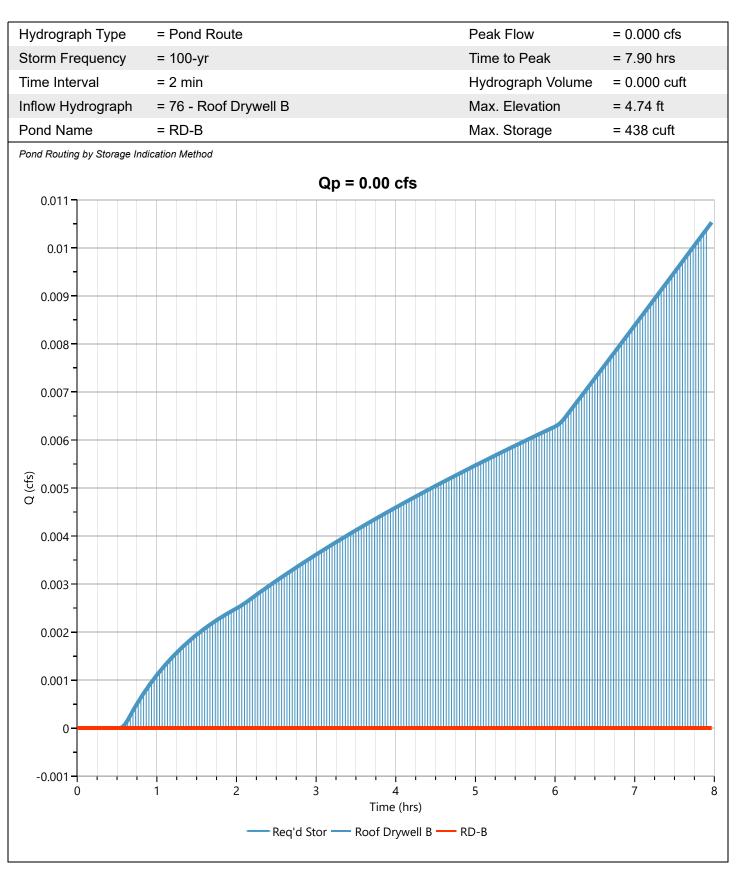
RD-B



Hydrology Studio v 3.0.0.29

Roof Drywell B

Project Name:



Hydrology Studio v 3.0.0.29

RD-B

12-13-2023

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.04	4.03
А	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one	CN source per line.			Totals =	0.04	4.03

4.03

0.04

Storm #2

10

5.01

4.77

=

Storm #3

100

7.83

7.59

=

Storm #1

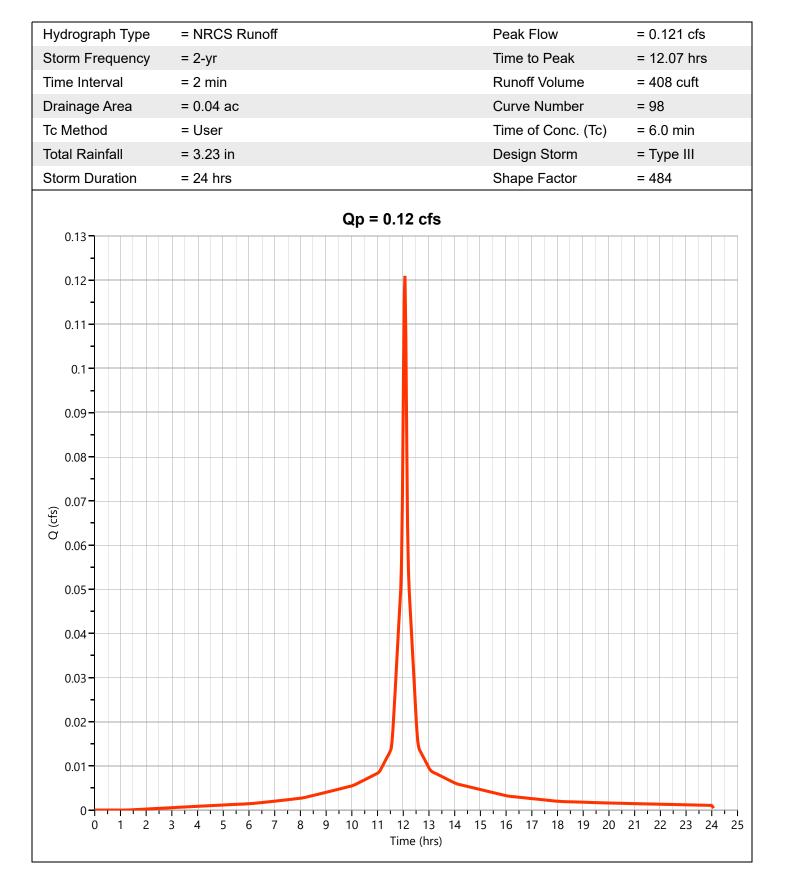
2 3.23

3.00

98.0<u>0</u>;

98

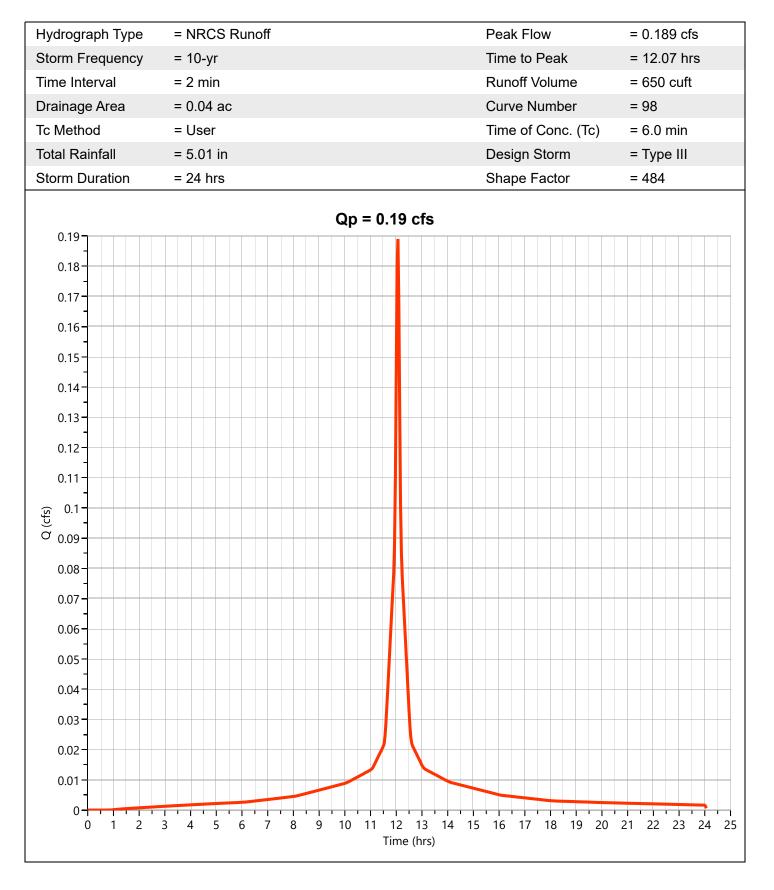
Use CN =


2. Runoff

Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

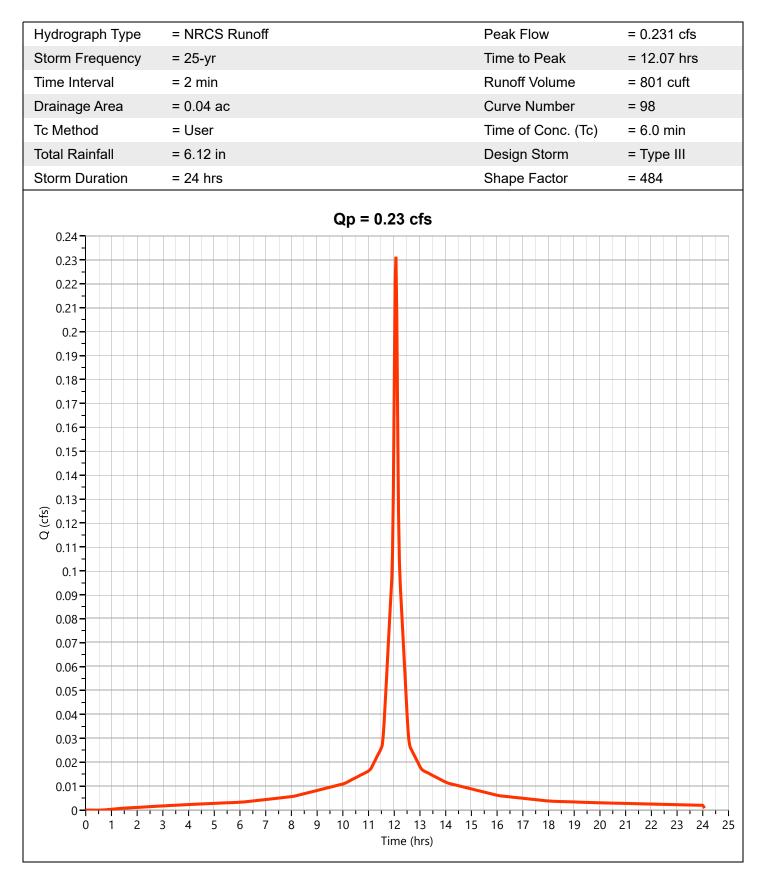
Hydrology Studio v 3.0.0.29

Roof Drywell C


Project Name: 12-13-2023

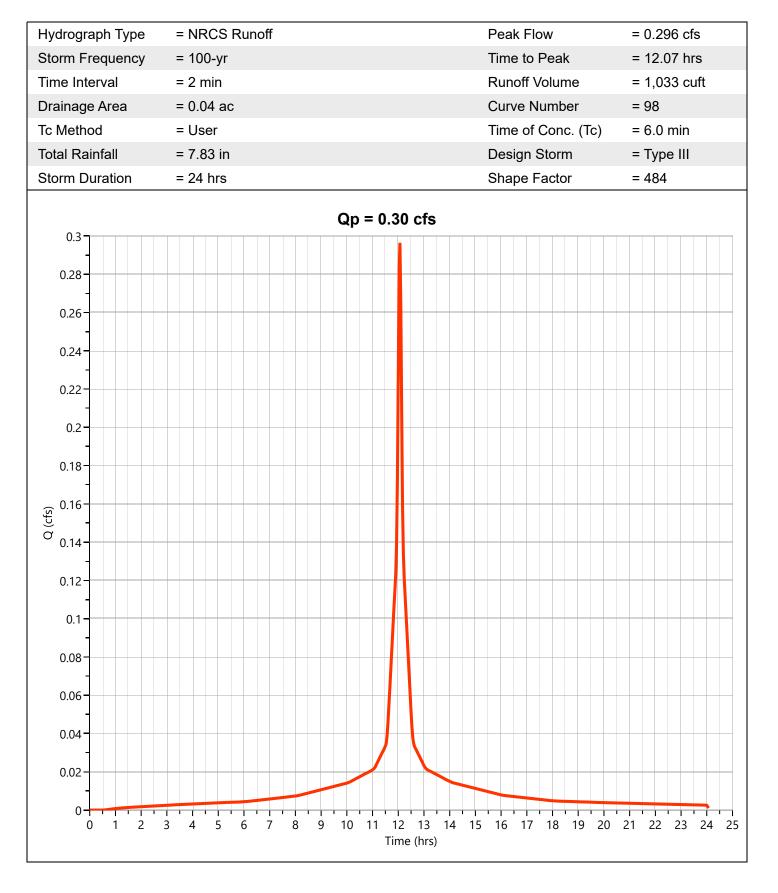
Hydrology Studio v 3.0.0.29

Roof Drywell C


12-13-2023

Hydrology Studio v 3.0.0.29

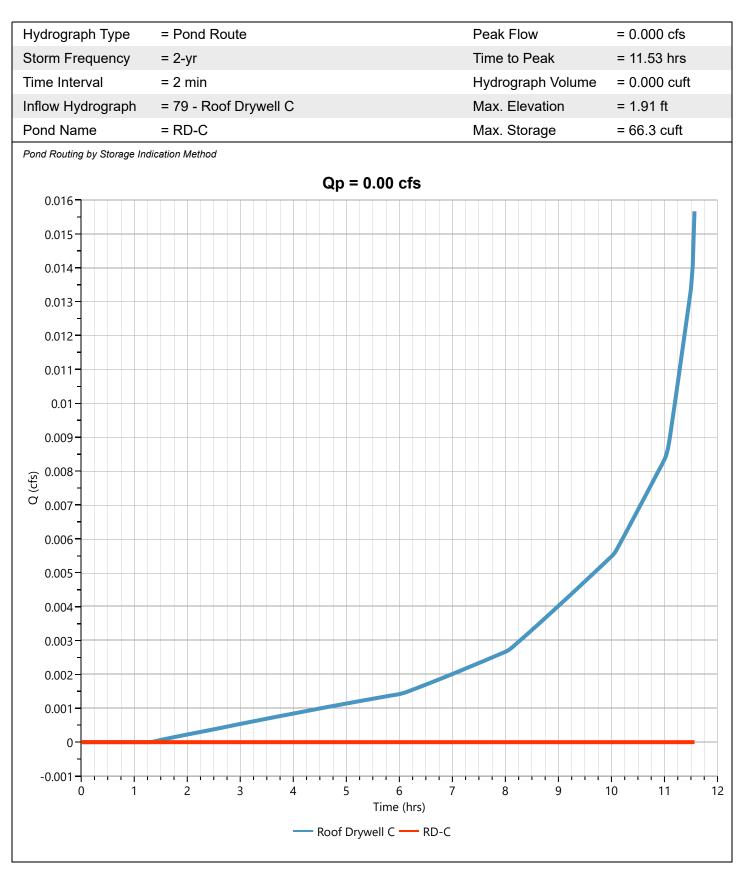
Roof Drywell C


12-13-2023

Hydrology Studio v 3.0.0.29

Roof Drywell C

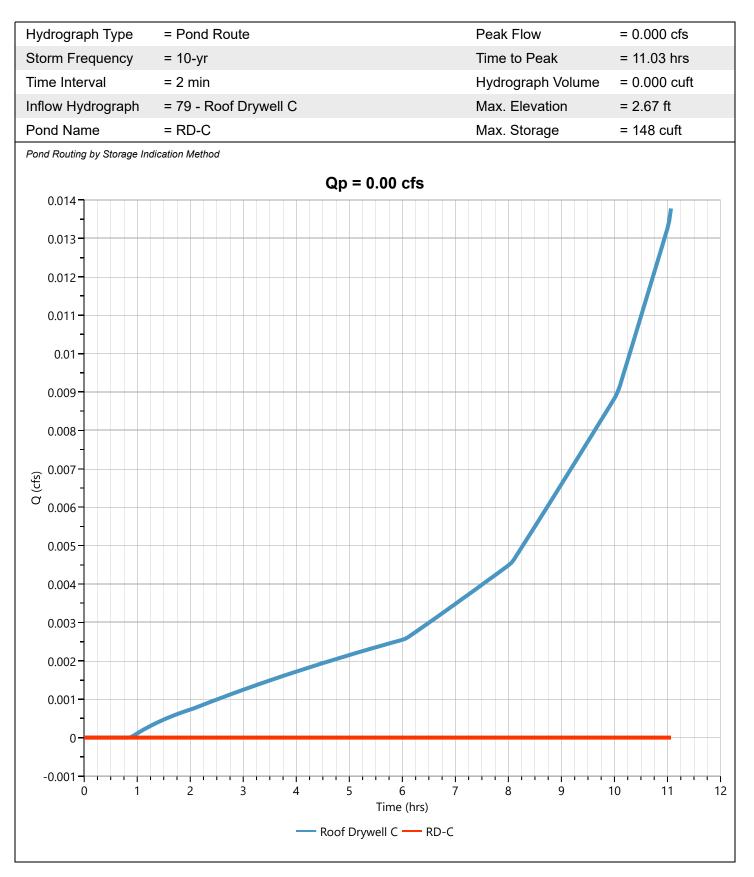
Project Name: 12-13-2023



Hydrology Studio v 3.0.0.29

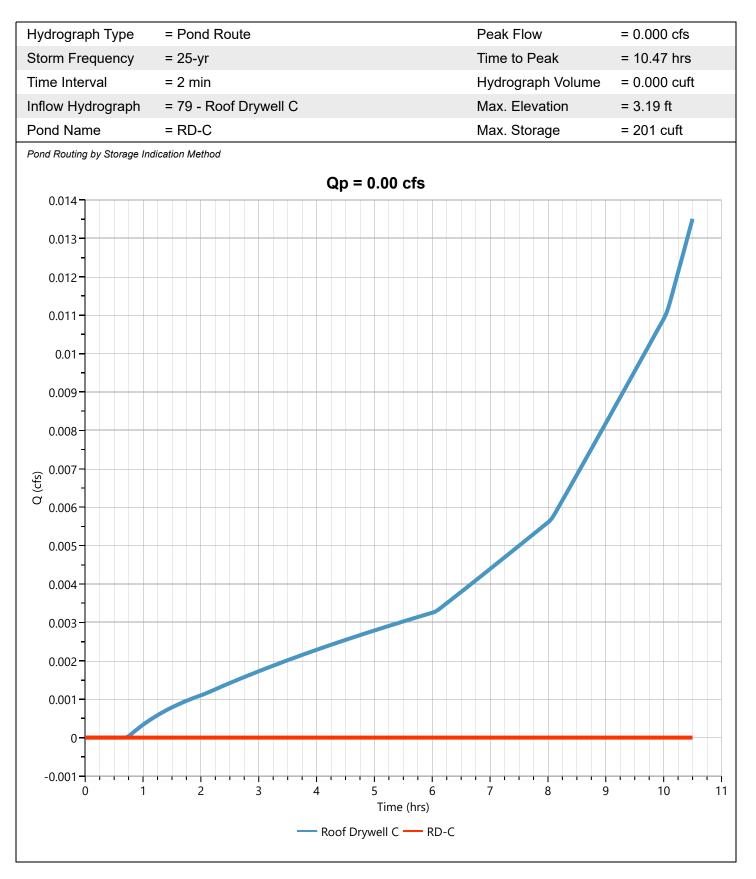
RD-C

12-13-2023


Project Name:

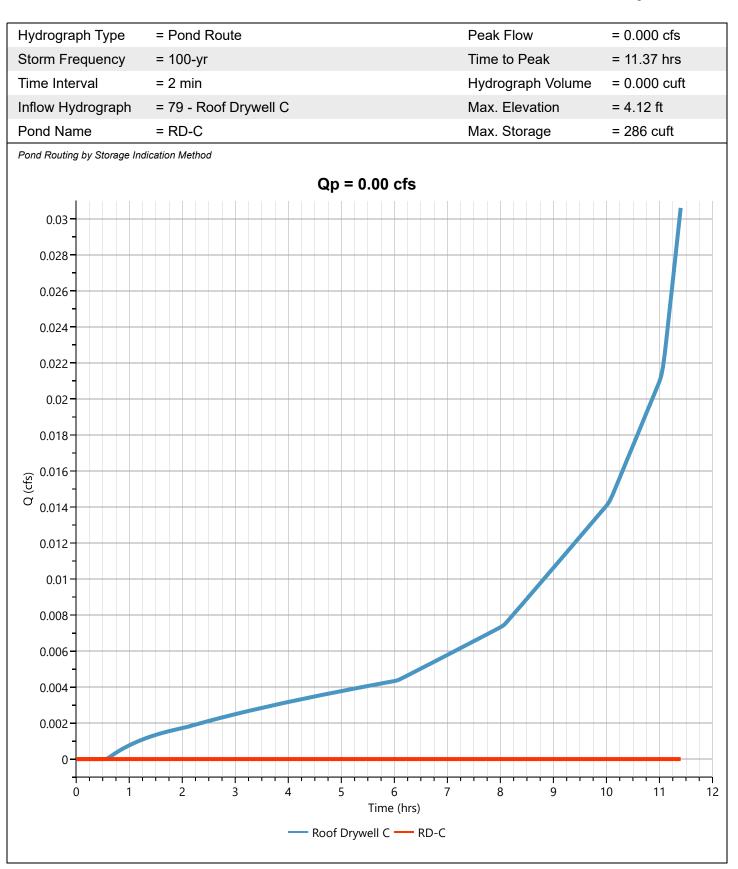
Hydrology Studio v 3.0.0.29

RD-C


12-13-2023

Hydrology Studio v 3.0.0.29

RD-C


12-13-2023

Hydrology Studio v 3.0.0.29

RD-C

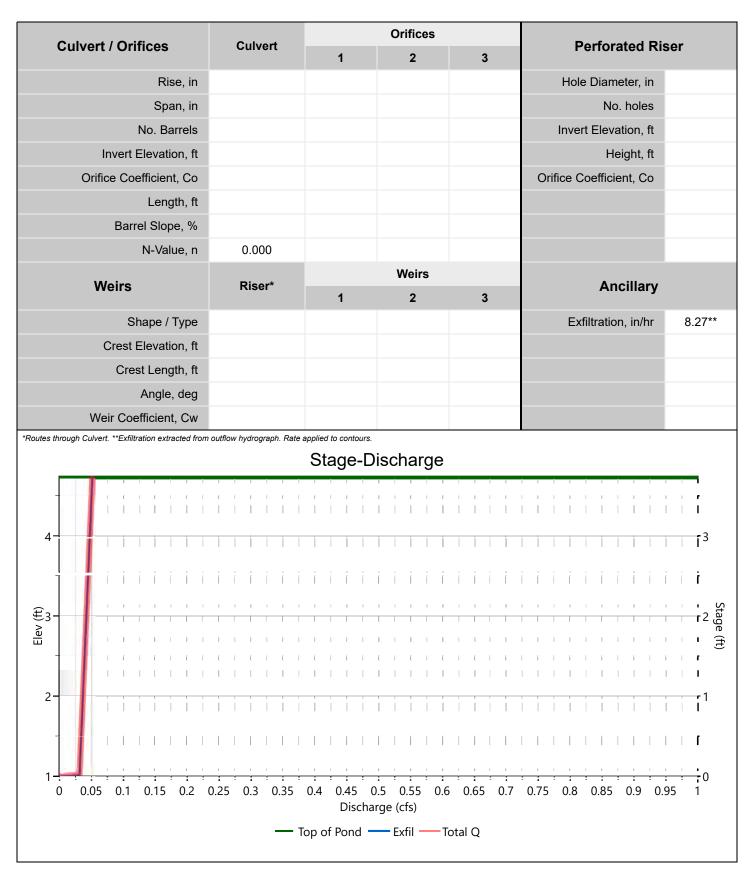
12-13-2023

Hydrology Studio v 3.0.0.29

RD-C

12-13-2023

Stage-Storage


StormTech	® SC-740⊺	[™] Cha	ambe	er		Stage / Storage Table Stage Elevation Contour Area Incr. Storage							_			
	Descriptio	n	h	nput		Stage (in)				rea	Incr. (cuft			ัotal Storaดู cuft)		
Char	mber Height,	in		30			(ft)	_	(sqft)			-				
С	O.0 1.00 165 Chamber Shape Arch 2.3 1.19 165 Chamber Width, in 51 4.5 1.38 165 Installed Length, ft 7.12 9.0 1.75 165 No. Chambers 3 11.3 1.94 165 Bare Chamber Stor, cuft 138 15.8 2.31 165 No. Rows 3 18.0 2.50 165).000 12.3		0.000 12.3										
			-									12.3		12.3 24.7		
Cha	imber Width,	IN		51								12.3		37.0		
Inst	alled Length,	ft	-	7.12								12.3		49.4		
	No Chambe	rs		3								20.1		69.5		
						13.5	2.13		165			20.2		89.7		
Bare Cha	mber Stor, cu	ıft		138		15.8	2.31		165		:	20.1		110		
	No. Row	/S		3		18.0	2.50		165		:	20.0		130		
						20.3	2.69		165			19.8		150		
Space Bet	ween Rows,	IN		6		22.5	2.88		165			19.5		169		
S	Stone Above,	in		6		24.8	3.06		165			19.2		188		
	Stana Dalaw			0		27.0	3.25		165			18.9		207		
3	Stone Below,	In		9		29.3	3.44		165			18.4		226		
:	Stone Sides,	in		12		31.5	3.63		165			17.9		243		
	Stone Ends,	in		12		33.8	3.81		165			17.2		261		
				12		36.0	4.00		165			16.3		277		
Encase	ement Voids, ^o	%	4	0.00		38.3	4.19		165			15.0		292		
ncasement Botto	m Elevation	ft		1.00		40.5	4.38		165			12.9		305		
nousement Botte				1.00		42.8 45.0	4.56 4.75		165 165			12.3 12.3		317 330		
						Stage-	Storage									
														4		
-																
														- 3		
;														2		
_																
2														1		
1																
		1 1	1					1		1 1	1 1	1 1	1 1	0		
0 20 4	0 60	80	100	12	Λ	140 160) 180 2	200	220	240	260	280	300	320		

Hydrology Studio v 3.0.0.29

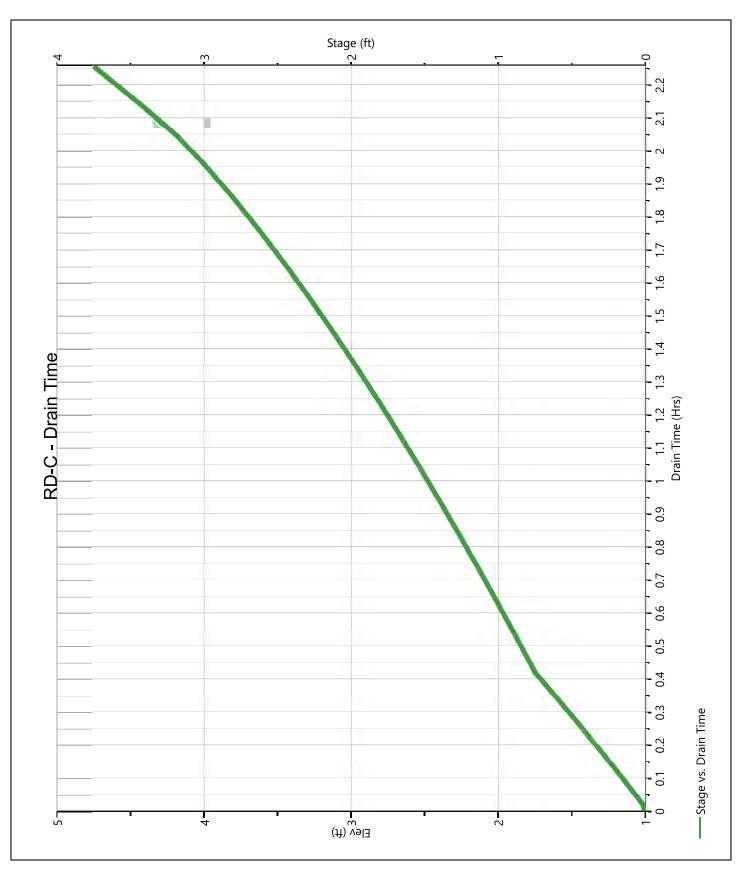
RD-C

12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

RD-C


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	1.00	0.000										0.000		0.000
0.19	1.19	12.3										0.033		0.033
0.38	1.38	24.7										0.034		0.034
0.56	1.56	37.0										0.035		0.035
0.75	1.75	49.4										0.036		0.036
0.94	1.94	69.5										0.037		0.037
1.13	2.13	89.7										0.038		0.038
1.31	2.31	110										0.039		0.039
1.50	2.50	130										0.040		0.040
1.69	2.69	150										0.041		0.041
1.88	2.88	169										0.042		0.042
2.06	3.06	188										0.043		0.043
2.25	3.25	207										0.044		0.044
2.44	3.44	226										0.045		0.045
2.63	3.63	243										0.046		0.046
2.81	3.81	261										0.047		0.047
3.00	4.00	277										0.048		0.048
3.19	4.19	292										0.049		0.049
3.38	4.38	305										0.050		0.050
3.56	4.56	317										0.051		0.051
3.75	4.75	330										0.052		0.052
														l
														l
														l
														l
														l

Hydrology Studio v 3.0.0.29

RD-C

Worksheet 2: Runoff curve number and runoff

SM-6781

1. Runoff curve number (CN)

Soil name and hydrologic	Cover description (cover type, treatment, and		CN 1/		Area	Product of CN x Area
group (appendix A)	hydrologic condition: percent impervious: unconnected/connected impervious area ratio)	Table 2-2	Fig. 2-3	Fig. 2-4	Acres	
-	Impervious	98			0.25	24.93
А	Woods - Good Condition	30			0.00	0.00
А	Open Space - Good Condition	39			0.00	0.00
С	Woods - Good Condition	70			0.00	0.00
С	Open Space - Good Condition	74			0.00	0.00
D	BVW	77			0.00	0.00
А	Gravel	76			0.00	0.00
А	OFFSITE AREA - 1 ACRE LOTS	51			0.00	0.00
С	OFFSITE AREA - 1 ACRE LOTS	79			0.00	0.00
1/ Use only one	CN source per line.	-		Totals =	0.25	24.93
CN (we	eighted) = total product = 24.93 = total area 0.25	98.00	; Use	CN =	98]

0.25

Storm #2

10

5.01

4.77

Storm #3

100

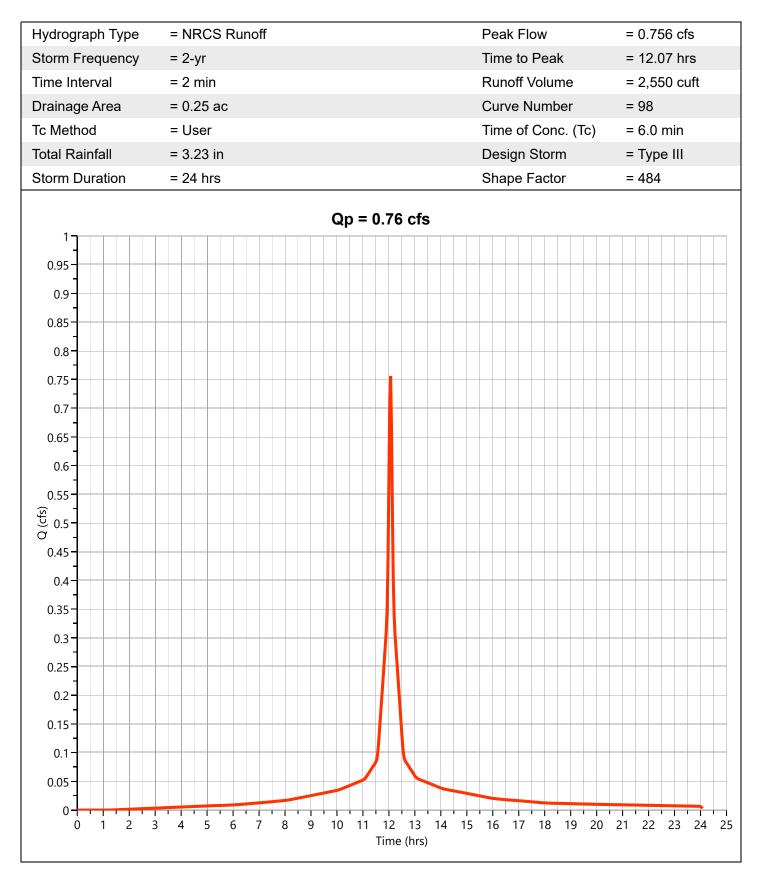
7.83

7.59

Storm #1

2 3.23

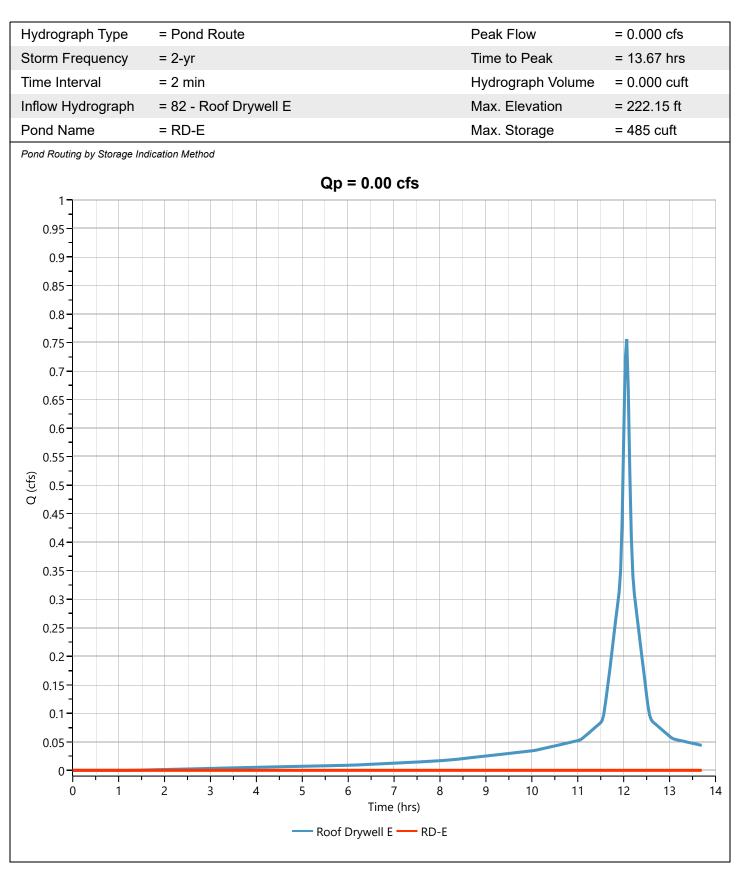
3.00


Frequency	yr
Rainfall, P (24-hour)	in
Runoff, Q (Use P and CN with table 2-1, fig. 2-1,) or eqs. 2-3 and 2-4.)	in

total area

Hydrology Studio v 3.0.0.29

Roof Drywell E


12-13-2023

Hydrology Studio v 3.0.0.29

RD-E

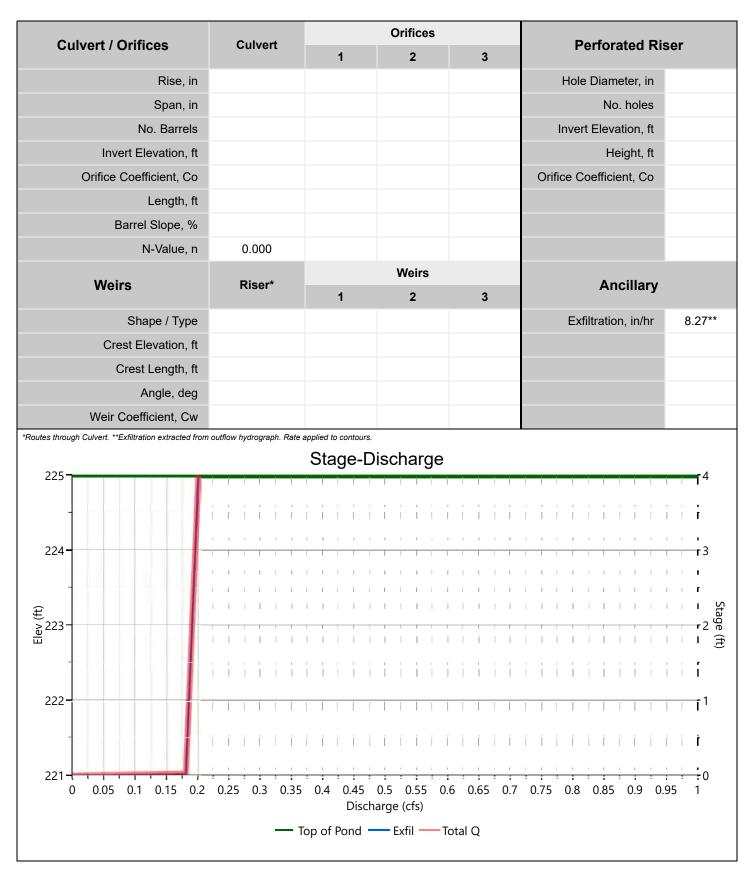
12-13-2023

Hydrology Studio v 3.0.0.29

RD-E

12-13-2023

Stage-Storage


	amber			Stage / Stora	ge Table	
Description	Input	Stage (in)	Elevation (ft)	Contour Area (sqft)	Incr. Storage (cuft)	Total Storag (cuft)
Chamber Height, in	30					
Chamber Shape	Arch	0.0	221.00 221.20	944 944	0.000 75.5	0.000
· · ·		4.8	221.20	944	75.5	151
Chamber Width, in	51	7.2	221.60	944	75.5	227
Installed Length, ft	7.12	9.6	221.80	944	75.5	302
No. Chambers	24	12.0	222.00	944	75.5	378
		14.4	222.20	944	142	520
Bare Chamber Stor, cuft	1,102	16.8	222.40	944	142	662
No. Rows	4	19.2	222.60	944	141	803
Space Between Rows, in	6	21.6	222.80	944	140	943
· ·		24.0 26.4	223.00 223.20	944 944	138 136	1,082 1,218
Stone Above, in	6	28.8	223.20	944	133	1,210
Stone Below, in	12	31.2	223.60	944	129	1,480
Stone Sides, in	12	33.6	223.80	944	125	1,605
		36.0	224.00	944	119	1,724
Stone Ends, in	12	38.4	224.20	944	112	1,836
Encasement Voids, %	40.00	40.8	224.40	944	102	1,937
ncasement Bottom Elevation, ft	221.00	43.2	224.60	944	83.1	2,020
neasement Dottom Lievation, it	221.00	45.6 48.0	224.80 225.00	944 944	75.5 75.5	2,096 2,172
25 ¬						
225						4
						4
24-						
24-						
224-						
224						
						2

Hydrology Studio v 3.0.0.29

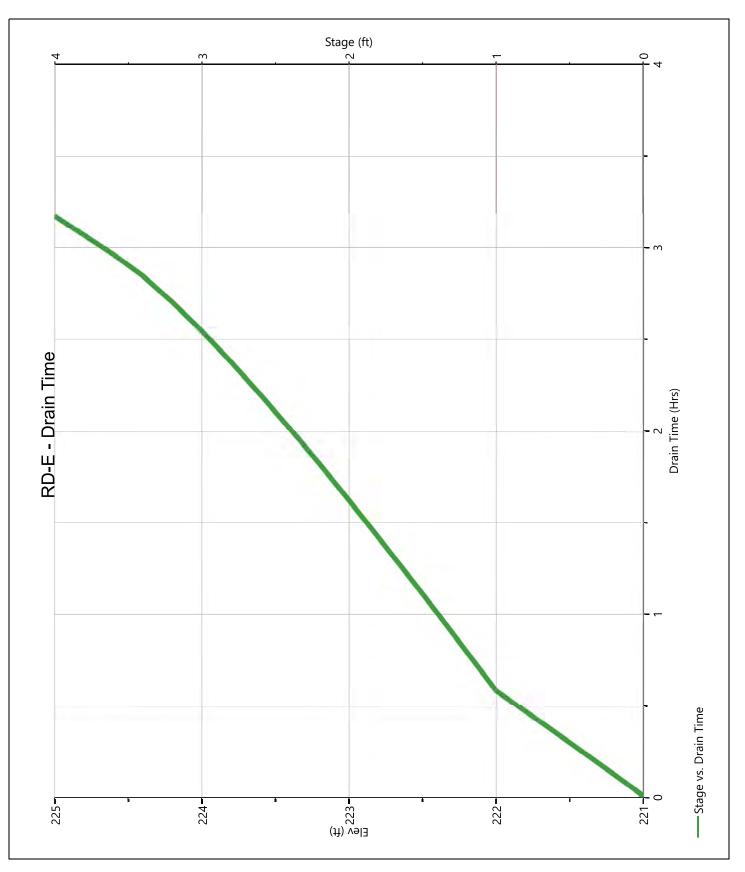
RD-E

12-13-2023

Stage-Discharge

Hydrology Studio v 3.0.0.29

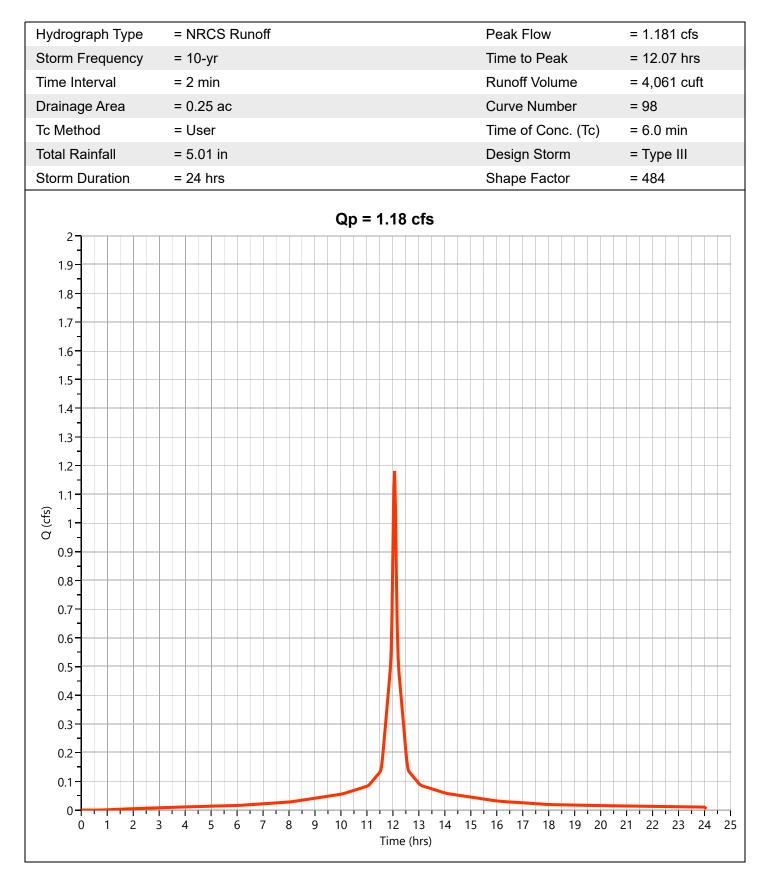
RD-E


Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	221.00	0.000										0.000		0.000
0.20	221.20	75.5										0.182		0.182
0.40	221.40	151										0.183		0.183
0.60	221.60	227										0.184		0.184
0.80	221.80	302										0.185		0.185
1.00	222.00	378										0.186		0.186
1.20	222.20	520										0.187		0.187
1.40	222.40	662										0.188		0.188
1.60	222.60	803										0.189		0.189
1.80	222.80	943										0.190		0.190
2.00	223.00	1,082										0.191		0.191
2.20	223.20	1,218										0.192		0.192
2.40	223.40	1,351										0.193		0.193
2.60	223.60	1,480										0.194		0.194
2.80	223.80	1,605										0.195		0.195
3.00	224.00	1,724										0.196		0.196
3.20	224.20	1,836										0.197		0.197
3.40	224.40	1,937										0.198		0.198
3.60	224.60	2,020										0.199		0.199
3.80	224.80	2,096										0.200		0.200
4.00	225.00	2,172										0.201		0.201

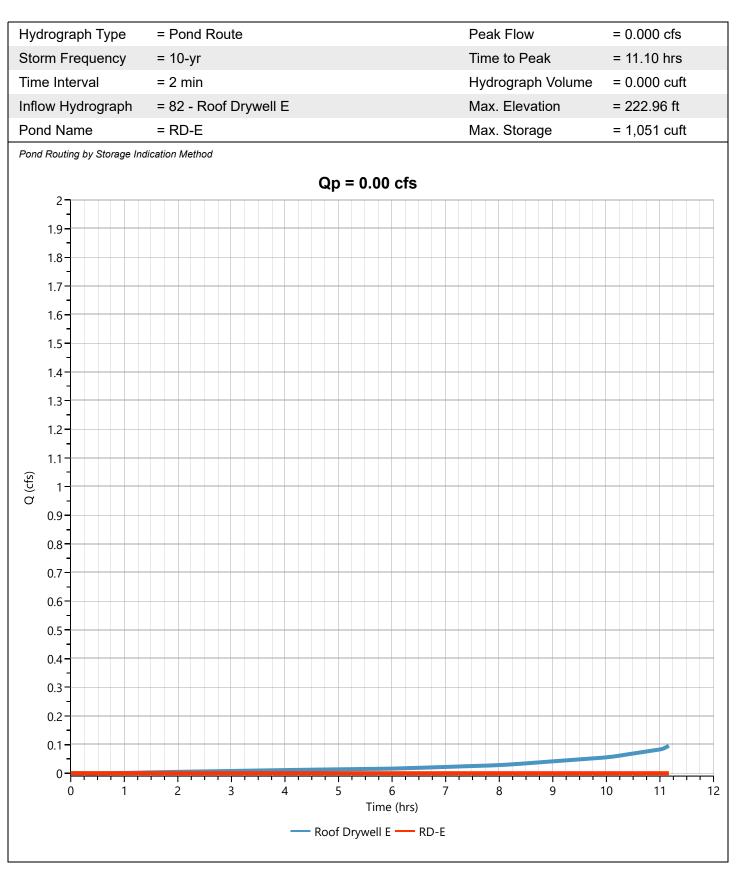
Hydrology Studio v 3.0.0.29

RD-E



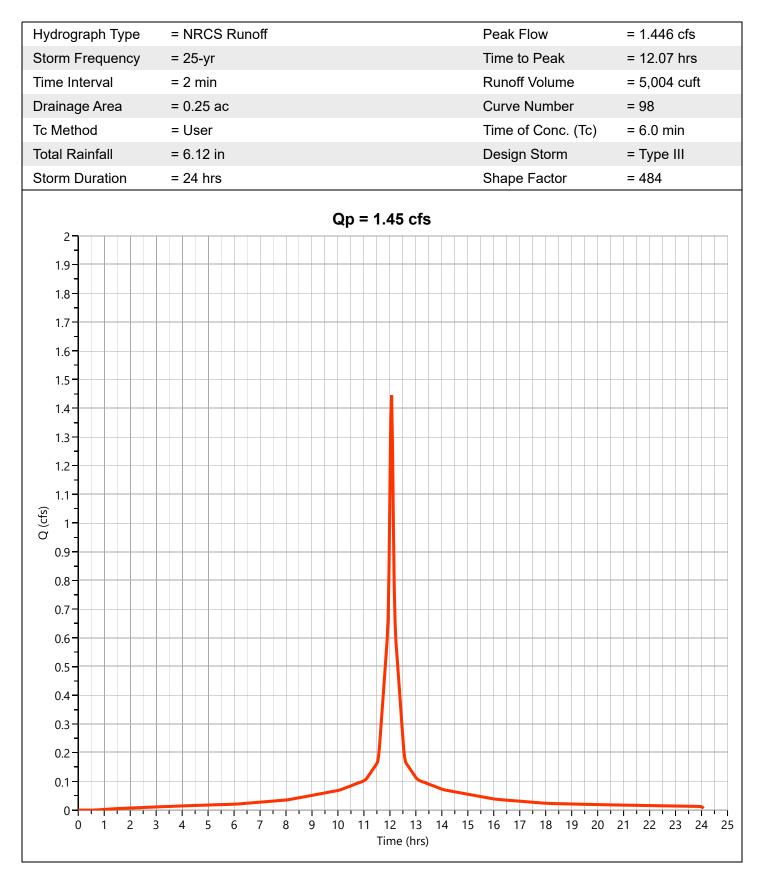
Hydrology Studio v 3.0.0.29

Roof Drywell E


12-13-2023

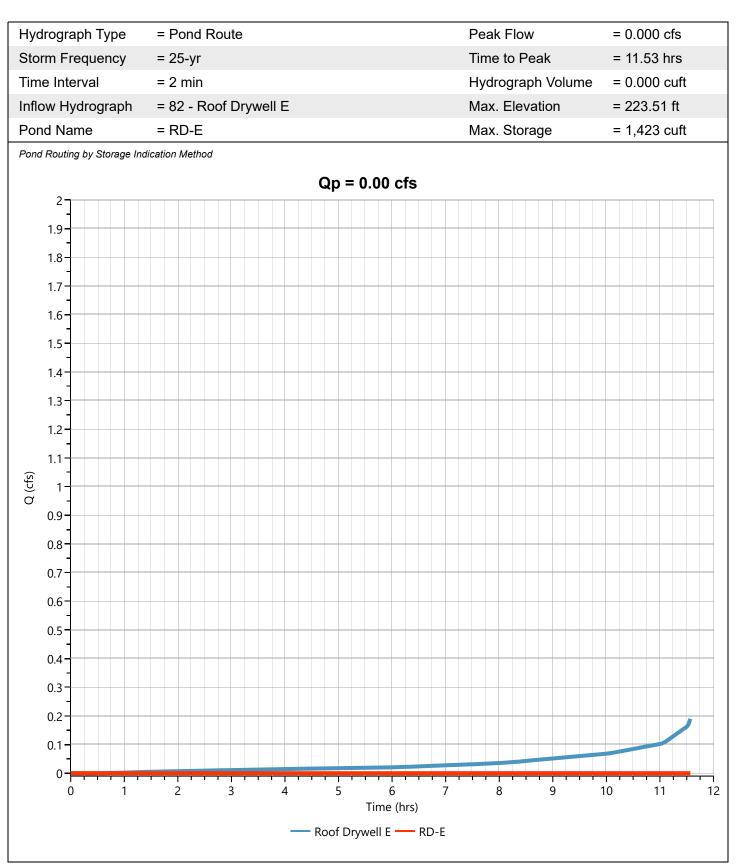
Hydrology Studio v 3.0.0.29

RD-E


12-13-2023

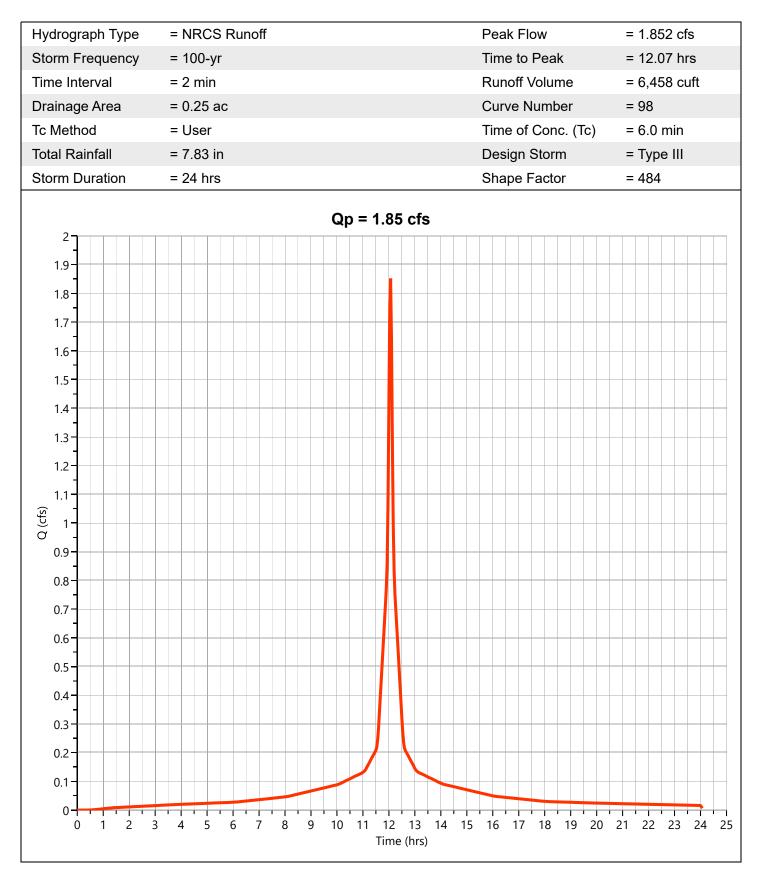
Hydrology Studio v 3.0.0.29

Roof Drywell E


12-13-2023

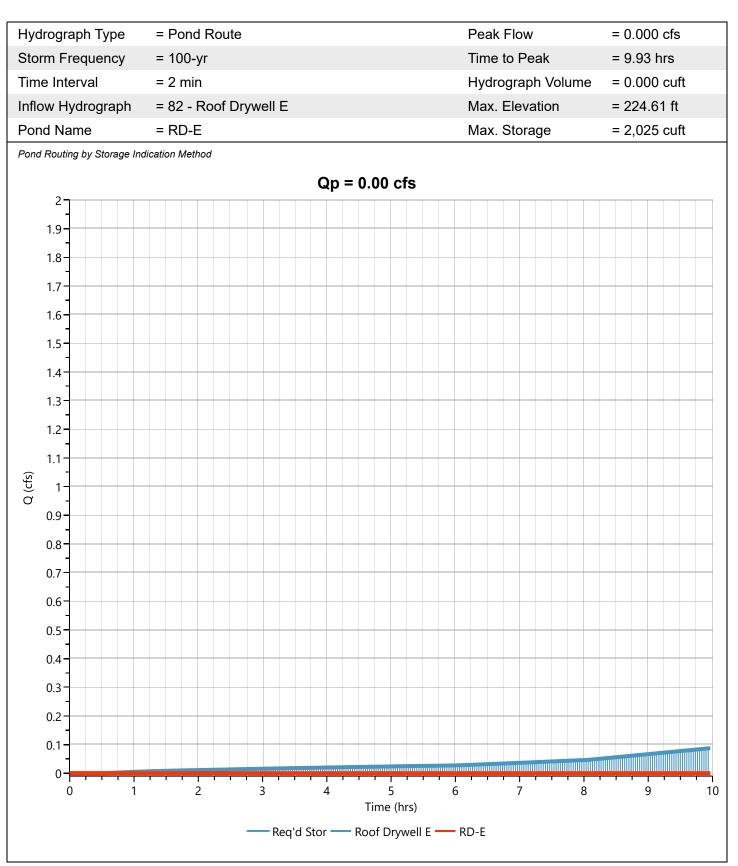
Hydrology Studio v 3.0.0.29

RD-E


12-13-2023

Hydrology Studio v 3.0.0.29

Roof Drywell E


12-13-2023

Hydrology Studio v 3.0.0.29

RD-E

12-13-2023

Groundwater Recharge Calculations

Job: <u>SM-6781</u>						Calculate	ed PFK
						Date:	12/12/2023
INFILTRATION BASI	N 1A (IB-1A)						
Soils:	Sand						
	A						
Required Recharge							
		noff x imp	ervious area				
		•					
Impervious area:	0.61 a	acres					
	26,592 s	s.f.					
Required Recharge	Volume (Rv)						
Rv =	26,592	s.f. x	<u>0.6</u>	=	1,330	c.f.	
			12				
Simple Dynamic Me	<u>thod</u>						
A=Rv / (D+KT)							
Rv=A(D+kT)							
D (depth of infiltration facility):	3.17 f						
K (saturated hydraulic conductivity):		nches/ho	ur				
		eet/hour					
T (time):		nours					
A=	1,457 s	s.t.					
Voids=	1.00					4.00	20 a f
Rv= Basin Volume:	6,627 c 7,171 c		(Below Outlet)		>	1,33	80 c.f.
Dasin volume.	7,1710	.1.					
72 Hour Drawdown							
Rv/(K x Bottom Area)=	1.57 H	lours					
· · · · · · · · · · · · · · · · · · ·	< 72 hours						

1.57 < 72 hours O.K.

Job: SM-6781							Calcu	lated PFK
							Date:	12/12/2023
INFILTRATION BA	SIN	18 (IR-18	3					
Soils:		and	1					
Hydrologic Group								
Required Recharg								
			unoff x im	pervious area				
Impervious area:		0.61	acres					
·		26,702	s.f.					
Required Recharg	ge Vo	olume (Rv)					
Rv	/ =	26,702	s.f. x	<u>0.6</u>	=	1,335	c.f.	
				12				
Simple Dynamic N	Meth	od						
A=Rv / (D+KT)								
Rv=A(D+kT)								
D (depth of infiltration facility	y):	2.9	ft					
K (saturated hydraulic conductivity	• •	8.27	inches/ho	our				
、 · · ·		0.69	feet/hour					
T (time	e):		hours					
•	Α <u>=</u>	1,244						
Voids	s=	1.00						
R	v=	5,322	c.f.			>	1	1,335 c.f.
Basin Volum	ne:	6,649	c.f.	(Below Outlet))			
72 Hour Drawdov								
Rv/(K x Bottom Area	ı)=	1.81	Hours					
1.5	81 <	72 hours	O.K.					

1.81 < 72 hours O.K.

Job: SM-6781							Calcu	lated PFK
							Date:	12/12/2023
INFILTRATION BASIN	1C (IB-1C	3						
	Sand	7						
Hydrologic Group:								
Required Recharge \	/olume							
· · · · · ·		unoff x im	pervious area					
Impervious area:		acres						
	19,524	s.f.						
	. I (D	,						
<u>Required Recharge V</u>	olume (RV	<u>)</u>						
Rv =	19,524	s.f. x	<u>0.6</u>	=	q	76	c.f.	
100 -	10,024	5.1. X	<u>0.0</u> 12	_	5	/0		
Simple Dynamic Met	hod							
A=Rv / (D+KT)								
Rv=A(D+kT)								
D (depth of infiltration facility):	2.9	ft						
K (saturated hydraulic conductivity):	8.27	inches/ho	ur					
	0.69	feet/hour						
T (time):	2	hours						
A=	670	s.f.						
Voids=	1.00							
Rv=	2,866				>			976 c.f.
Basin Volume:	4,528	c.f.	(Below Outlet)					
<u>72 Hour Drawdown</u>								
Rv/(K x Bottom Area)=	2.29	Hours						
· · · · · · · · · · · · · · · · · · ·	< 72 hours							

Job: <u>SM-6781</u>						Cal	culated PFK
						Dat	e: 12/12/2023
INFILTRATION BASI	N 1D (IB-10))					
Soils:	Sand						
	A						
Required Recharge							
		unoff x imp	pervious area				
Impervious area:		acres					
	18,184	s.f.					
Required Recharge	Volume (Rv	<u>)</u>					
_							
Rv =	18,184	s.f. x	<u>0.6</u> 12	=	90	09 c.f.	
Circula Durancia Ma	ام م ما		12				
Simple Dynamic Me	thou						
A=Rv / (D+KT)							
Rv=A(D+kT)	2.75	£4					
D (depth of infiltration facility):							
K (saturated hydraulic conductivity):		inches/ho	ur				
		feet/hour					
T (time): A=	833	hours					
A= Voids=	1.00	5.1.					
Rv=	3,439	c f			>		909 c.f.
Basin Volume:	4,728		(Below Outlet)		-		000 0.1.
	.,. 20		(
72 Hour Drawdown							
Rv/(K x Bottom Area)=	1.99	Hours					
1.99	< 72 hours	О.К.					

Job: SM-6781						Calculat	ted PFK
						Date:	12/12/2023
INFILTRATION BASIN	1 1 F (IB_1 F)						
	Sand						
	4						
Required Recharge \							
		noff x imi	pervious area				
Impervious area:	1.94 a	acres					
	84,698 s	s.f.					
Required Recharge V	olume (Rv)						
Rv =	84,698	s.f. x	0.6	=	4,235	c.f.	
			<u>0.6</u> 12		-		
Simple Dynamic Met	hod						
A=Rv / (D+KT)							
Rv=A(D+kT)							
D (depth of infiltration facility):	3.5 f	t					
K (saturated hydraulic conductivity):		nches/ho	ur				
(<i>S</i> , <i>S</i> ,	0.69 f	eet/hour					
T (time):		nours					
A=	2,758 s						
Voids=	1.00						
Rv=	13,454 (c.f.			>	4,2	35 c.f.
Basin Volume:	26,816 0	c.f.	(Below Outlet)				
<u>72 Hour Drawdown</u>							
Rv/(K x Bottom Area)=	2.89 I	Hours					
	< 72 hours						

Job: SM-6781						Calcula	ted PFK
						Date:	12/12/2023
INFILTRATION BASI	1 1 E (IR_1 E)						
	Sand						
	A						
Required Recharge							
		noff x imi	pervious area				
Impervious area:	1.65 a	acres					
·	71,790 s	s.f.					
	,						
Required Recharge \	/olume (Rv)	1					
Rv =	71,790	s.f. x	0.6	=	3,590	c.f.	
			<u>0.6</u> 12				
Simple Dynamic Met	thod						
A=Rv / (D+KT)							
Rv=A(D+kT)							
D (depth of infiltration facility):	2.9 1	ft					
K (saturated hydraulic conductivity):	8.27 i	nches/ho	ur				
	0.69 1	eet/hour					
T (time):	2	nours					
Á=	3,972 s						
Voids=	1.00						
Rv=	16,994 (c.f.			>	3,5	90 c.f.
Basin Volume:	18,676 (c.f.	(Below Outlet)				
<u>72 Hour Drawdown</u>							
Rv/(K x Bottom Area)=	1.59 I	Hours					
· · · · · · · · · · · · · · · · · · ·	< 72 hours						

Job: SM-6781						Calculate	ed PFK
						Date:	12/12/2023
INFILTRATION BAS	IN 16 (IB-16	:)					
Soils:	Sand	·)					
Hydrologic Group:	A						
Required Recharge							
	b inches of ru	inoff x imp	ervious area				
0.0							
Impervious area:	1.10	acres					
·	47,811	s.f.					
	, –						
Required Recharge	Volume (Rv)					
	•	<u>L</u>					
Rv =	- 47,811	s.f. x	<u>0.6</u>	=	2,391	c.f.	
	,		12				
Simple Dynamic M	ethod						
A=Rv / (D+KT)							
Rv=A(D+kT)							
D (depth of infiltration facility)	: 2.8	ft					
K (saturated hydraulic conductivity)		inches/hou	ır				
		feet/hour					
T (time)		hours					
A=							
Voids=		0					
Rv=		c.f.			>	2.39)1 c.f.
Basin Volume	-		(Below Outlet)		-	_,	
	-,		(
72 Hour Drawdowr	<u>1</u>						
Rv/(K x Bottom Area)=	-	Hours					
· · · · · · · · · · · · · · · · · · ·	72 hours						

1.72 < 72 hours O.K.

Job: <u>SM-6781</u>					Calculate Date:	d PFK 12/12/2023
Hydrologic Group: Required Recharge	Sand A /olume	f x impervious ai	rea			
Impervious area:	0.84 acre 36,667 s.f.)S				
Required Recharge V	<u>′olume (Rv)</u>					
Rv =	36,667 s	.f. x <u>0.6</u> 12	=	1,833	c.f.	
<u>Simple Dynamic Met</u> A=Rv / (D+KT) Rv=A(D+kT)	<u>hod</u>					
D (depth of infiltration facility):	2.5 ft					
K (saturated hydraulic conductivity):	8.27 inch	es/hour				
	0.69 feet					
T (time):	2 hou					
A=	3,652 s.f.					
Voids=	0.40					
Rv=	8,686 c.f.			>	1,83	3 c.f.
Basin Volume:	6,111 c.f.	(Below C	Outlet, from H	ydrology S	studio Mode	el)
72 Hour Drawdown Rv/(K x Bottom Area)= 1.02	1.02 Hou < 72 hours O.K					

Subsurface Chambers 1I (SC-1I) Soils: Sand	off x impervious area	
Hydrologic Group: A Required Recharge Volume		
Impervious area: 0.43 a 18,552 s		
Required Recharge Volume (Rv)		
Rv = 18,552	s.f. x $\frac{0.6}{12}$ =	928 c.f.
Simple Dynamic Method		
A=Rv / (D+KT)		
Rv=A(D+kT)		
D (depth of infiltration facility): 2.5 f		
K (saturated hydraulic conductivity): 8.27 ii	ches/hour	
0.69 f	et/hour	
T (time): 2 h	ours	
A= 1,382 s	f.	
Voids= 0.40		
Rv= 3,287 c		> 928 c.f.
Basin Volume: 2,267 c	f. (Below Outlet, fron	n Hydrology Studio Model)
<u>72 Hour Drawdown</u> Rv/(K x Bottom Area)= 1.00 F 1.00 < 72 hours (

Job: <u>SM-6781</u>						Calculat Date:	ted PFK 12/12/2023
Subsurface Chambo Soils: Hydrologic Group: Required Recharge 0.6	Sand A Volume	-	pervious area	a			
Impervious area:	0.48 20,815	acres s.f.					
Required Recharge	Volume (Rv	<u>1)</u>					
Rv =	20,815	s.f. x	<u>0.6</u> 12	=	1,041	c.f.	
Simple Dynamic Me	<u>ethod</u>						
A=Rv / (D+KT)							
Rv=A(D+kT)							
D (depth of infiltration facility):		ft					
K (saturated hydraulic conductivity):		inches/hc	ur				
		feet/hour					
T (time):		hours					
A=	,						
Voids= Rv=						1 0	41 c.f.
Basin Volume:			(Below Ou	tlet from H	 - -		
Basin volume.	0,004	0.1.			iyarology c		
72 Hour Drawdown							
Rv/(K x Bottom Area)=		Hours					
1.09	< 72 hours	о.к.					

Job: <u>SM-6781</u>							Calcu Date:	llated PFK 12/12/2023
Soils: Hydrolo	ogic Group: / ed Recharge \	Sand A /olume		pervious area				
Imperv	ious area:	0.43 a 18,948 s						
Require	ed Recharge V	olume (Rv)	<u>.</u>					
	Rv =	18,948	s.f. x	<u>0.6</u> 12	=	947	c.f.	
Simple	Dynamic Met	hod						
	(D+KT)							
Rv=A(I	. ,							
D (depth of infiltra		4.75	it					
K (saturated hydraulic of	• ·	8.27 i	nches/ho	ur				
		0.69	eet/hour					
	T (time):	2	nours					
	Â=	1,217 :	s.f.					
	Voids=	1.00						
	Rv=	7,458				>		947 c.f.
Ba	asin Volume:	3,659	c.f.	(Below Outlet)				
<u>72 Hou</u>	<u>r Drawdown</u>							
Rv/(K x Bo	ottom Area)=	0.71	Hours					
	0.71 <	< 72 hours	О.К.					

Job: <u>SM-6781</u>							Calculat Date:	ed PFK 12/12/2023
	Hydrologic Group: // Required Recharge \	Sand	-	ervious ai	rea			
	Impervious area:	1.34 a 58,169 s						
	Required Recharge V	<u>olume (Rv)</u>						
	Rv =	58,169	s.f. x	<u>0.6</u> 12	=	2,908	c.f.	
	Simple Dynamic Met	<u>hod</u>						
	A=Rv / (D+KT)							
	Rv=A(D+kT)							
D (depth o	of infiltration facility):	5 f	t					
K (saturated hyd	draulic conductivity):	8.27 i	nches/ho	Jr				
		0.69 f	eet/hour					
	T (time):	2 ł	nours					
	A=	5,043 s	s.f.					
	Voids=	0.40						
	Rv=	17,037 (>		08 c.f.
	Basin Volume:	16,124 0	c.f.	(Below C	Outlet, from	Hydrology S	Studio Moo	del)
	72 Hour Drawdown /(K x Bottom Area)= 1.37 <	1.37 I 72 hours (

Job: SM-6781						Calcula Date:	ated PFK 12/12/2023
Hydrologic Group: A Required Recharge V	Sand	-	ervious are	ea			
Impervious area:	1.00 a 43,730 s						
Required Recharge V	olume (Rv)						
Rv =	43,730	s.f. x	<u>0.6</u> 12	=	2,187	c.f.	
<u>Simple Dynamic Met</u> A=Rv / (D+KT) Rv=A(D+kT)	<u>hod</u>						
D (depth of infiltration facility):	5.25 f	t					
K (saturated hydraulic conductivity):		nches/hou eet/hour	ır				
T (time):	2 h	nours					
A=	3,526 s	s.f.					
Voids=	0.40						
Rv=	12,265 c		<i>.</i>		>		187 c.f.
Basin Volume:	11,515 c	c.t.	(Below Ou	utlet, from	Hydrology S	Studio Mo	odel)
<u>72 Hour Drawdown</u> Rv/(K x Bottom Area)=	1.36 ł						

1.36 < 72 hours O.K.

Job: <u>SM-6781</u>	<u> </u>						Calculat Date:	ed PFK 12/12/2023
	Hydrologic Group: A Required Recharge \	Sand A /olume		pervious are	а			
	Impervious area:	0.26 a 11,538 s						
	Required Recharge V	<u>olume (Rv)</u>	<u>.</u>					
	Rv =	11,538	s.f. x	<u>0.6</u> 12	=	577	c.f.	
	Simple Dynamic Met	hod						
	A=Rv / (D+KT)							
	Rv=A(D+kT)							
D (depth	of infiltration facility):	3.5	it					
K (saturated h	ydraulic conductivity):	8.27 i	nches/ho	ur				
		0.69	eet/hour					
	T (time):	2	nours					
	A=	1,070 :	s.f.					
	Voids=	0.40						
	Rv=	2,973				>		77 c.f.
	Basin Volume:	2,159	c.f.	(Below Ou	tlet, from H	lydrology S	Studio Mo	del)
R	<u>72 Hour Drawdown</u> xv/(K x Bottom Area)= 1.05 •	1.05 • 72 hours						

Job: <u>SM-6781</u>	-						Calculat Date:	ed PFK 12/12/2023
	Hydrologic Group: // Required Recharge \	Sand A /olume		pervious are	a			
	Impervious area:	0.26 ; 11,538 ;						
	Required Recharge V	olume (Rv)	<u>.</u>					
	Rv =	11,538	s.f. x	<u>0.6</u> 12	=	577	c.f.	
	Simple Dynamic Met	hod						
	A=Rv / (D+KT)							
	Rv=A(D+kT)							
D (depth	of infiltration facility):	3.5 1	ft					
K (saturated h	ydraulic conductivity):	8.27 i	nches/ho	ur				
·		0.69 1	eet/hour					
	T (time):	2	nours					
	A=	501 :	s.f.					
	Voids=	0.40						
	Rv=	1,392 (c.f.			>	5	77 c.f.
	Basin Volume:	1,032	c.f.	(Below Ou	utlet, from H	lydrology S	Studio Mo	del)
R	72 Hour Drawdown v/(K x Bottom Area)= 1.08 •	1.08 72 hours						

Job: SM-6781							Calcul	ated PFK	
							Date:	12/12/2023	}
		-)						
Soils:		and							
Hydrologic Group									
Required Recharg	-		un off v im						
0	.0 II	iches of ru		pervious area					
Impervious area:		0.63	acres						
		27,456	s.f.						
Required Recharg	ge Vo	olume (Rv)	<u>)</u>						
Rv	/ =	27,456	s.f. x	<u>0.6</u> 12	=	1,373	c.f.		
Simple Dynamic N	Meth	hod							
A=Rv / (D+KT)	<u>me ci</u>								
Rv=A(D+kT)									
D (depth of infiltration facility	v).	2.9	ft						
K (saturated hydraulic conductivity			inches/hc	ur					
	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		feet/hour						
T (time	⊳).		hours						
	٥). 4=	1,153							
Voids		1.00	0						
	v=	4,933	c.f.			>	1.	373 c.f.	
Basin Volum		6,936		(Below Outlet)			- ,		
72 Hour Drawdow	vn								
Rv/(K x Bottom Area	ı)=	2.04	Hours						
2.(04 <	72 hours	О.К.						

2.04 < 72 hours O.K.

Job: SM-6781					Calculat	
					Date:	12/12/2023
Roof Drywell A (RD-A)						
Soils: Sand						
Hydrologic Group: A						
Required Recharge Volume	of rupoff v imp	onvious area				
0.0 inches (of runoff x imp	ervious area				
Impervious area: 0.	03 acres					
1,3	08 s.f.					
Required Recharge Volume	<u>(Rv)</u>					
Rv = 1,308	s.f. x	0.0	_	65	c.f.	
Rv = 1,308	5.1. X	<u>0.6</u> 12	=	65	C.I.	
Simple Dynamic Method						
A=Rv / (D+KT)						
Rv=A(D+kT)						
D (depth of infiltration facility):	3.5 ft					
()	27 inches/hou	ır				
	69 feet/hour					
T (time):	2 hours					
	10 s.f. 40					
	40 06 c.f.			>		65 c.f.
	20 c.f.	(Below Outle				
			-			-
72 Hour Drawdown						
,	04 Hours					
1.04 < 72 ho	urs O.K.					

Job: SM-6781							Calculat	ed PFK
							Date:	12/12/2023
Roof Dry	well B (RD-E	2)						
Soils:	-	Sand						
Hydrologi								
	Recharge V							
	-		noff x im	pervious are	a			
Imperviou	is area:	0.06						
		2,547 :	s.f.					
Dogwinod	Decherge							
Required	Recharge V	olume (RV)	<u> </u>					
	Rv =	2,547	s.f. x	<u>0.6</u>	=	127	c.f.	
		2,0	Ulli X	12		/		
Simple Dy	/namic Met	<u>hod</u>						
A=Rv / (D								
Rv=A(D+I	kT)							
D (depth of infiltration	on facility):	3.5 1	ft					
K (saturated hydraulic cor	nductivity):	8.27 i	inches/ho	ur				
		0.69	feet/hour					
	T (time):	2	hours					
	A=	220 :	s.f.					
	Voids=	0.40						
	Rv=	611 (>		27 c.f.
Basi	n Volume:	440 (c.f.	(Below Ou	utlet, from H	lydrology S	Studio Mod	del)
72 Hour D	Drawdown							
Rv/(K x Botto		1.04	Hours					
		< 72 hours						

Job: SM-6781					Calculate	ed PFK
					Date:	12/12/2023
Roof Drywell C (RD-C)						
Soils: Sand						
Hydrologic Group: A						
Required Recharge Volume						
0.6 inches of	runoff x imp	ervious area	l			
•	acres					
1,791	s.t.					
Required Recharge Volume (R	v)					
Required Recharge Volume (R	<u>v</u>					
Rv = 1,791	s.f. x	<u>0.6</u>	=	90	c.f.	
		12				
Simple Dynamic Method						
A=Rv / (D+KT)						
Rv=A(D+kT)						
D (depth of infiltration facility): 3.5	ft					
K (saturated hydraulic conductivity): 8.27	inches/hou	ır				
0.69	feet/hour					
	hours					
	i s.f.					
Voids= 0.40						
	c.f.			>		90 c.f.
Basin Volume: 330) c.f.	(Below Outl	et, from Hy	/drology \$	Studio Moc	iel)
72 Hour Drawdown						
	Hours					
1.04 < 72 hour	s O.K.					

Job: SM-6781							Calcula	ted PFK
							Date:	12/12/2023
Roof Drywell		:)						
Soils:	-	- <i>I</i> Sand						
Hydrologic Gr	-							
Required Rec								
	-		noff x im	pervious are	а			
Impervious ar	ea:	0.25 a						
		11,083 ទ	s.f.					
Required Rec	harge V	olume (Rv)						
	Du	44.000		0.0			. (
	Rv =	11,083	s.f. x	<u>0.6</u> 12	=	554	c.f.	
Simple Dynan	nic Metl	hod		12				
A=Rv / (D+KT								
Rv=A(D+kT)	,							
D (depth of infiltration fa	cility):	3.5 f	t					
K (saturated hydraulic conduc		8.27 i	nches/hc	ur				
	• •	0.69 f	eet/hour					
Т	(time):	21	nours					
	A=	944 s	s.f.					
V	/oids=	0.40						
	Rv=	2,623 (>		54 c.f.
Basin Vo	olume:	2,172 (c.f.	(Below Ou	tlet, from H	ydrology S	Studio Mo	del)
72 Hour Draw	down							
Rv/(K x Bottom A		1.20 I	Houre					
		< 72 hours						
	1.20		•					

Required Recharge Volume

Job:	SM-6781					Calci	lated by:	PFK
505.	5141-0781					Calco	•	12/12/20
							Dale.	12/12/20
	Required Recharge	Volume						
	<u>Nequired Necharge</u>	volume						
		Soils:	Sand					
	Hydrold	gic Group:						
	Пушою			lumo				
		Required F						
	Tatal lass am				ervious area			
	Total Imperv	vious Area:		acres				
			785,157	s.t.				
	1.)	Required F	<u>Recharge V</u>	<u>olume (Rv)</u>				
		Rv =	785,157	s.f. x	<u>0.6</u>	=	39,258	c.f.
					12			
						=	39,258	c.f.
							,	
	Im	pervious Ar	ea drainin	g to rechard	ge facilities	=	785,157	s.f.
	<u></u>		785,157		<u>, e : a e : : : : : : : : : : : : : : : :</u>			
			785,157			=	1.00	
	2 \	Adjusted A	,	oquirod Do	aharga Valu	~ ~		
	•		/IIIIIIIIIII K	equired Re	charge Volu	ne		
	3.)		00.050		4.00			6
		Rv=	39,258	s.f. x	1.00	=	39,258	c.f.
	4.)							
	Recharge Volume P							
				N 1A (IB-1A	,	=	6,627	c.f.
				N 1B (IB-1E		=	5,322	c.f.
				N 1C (IB-10	,	=	2,866	c.f.
				N 1D (IB-1[=	3,439	c.f.
				N 1E (IB-1E		=	13,454	c.f.
				N 1F (IB-1F	,	=	16,994	c.f.
				N 1G (IB-10		=	9,213	c.f.
				s 1H (SC-1		=	8,686	c.f.
				s 1I (SC-1I)		=	3,287	c.f.
				s 1J (SC-1.		=	4,765	c.f.
				s 2A (SC-2		=	7,458	c.f.
				s 3A (SC-3	,	=	17,037	c.f.
				s 3B (SC-3		=	12,265	c.f.
				s 4A (SC-4		=	2,973	c.f.
				s 5A (SC-5	,	=	1,392	c.f.
				N 6A (IB-6A	4)	=	4,933	c.f.
		Roof Dryw	,	,	5 units	=	1,528	c.f.
		Roof Dryw			51 units	=	31,173	c.f.
		Roof Dryw			53 units	=	24,297	c.f.
		Roof Dryw	ell A (RD-E)		=	2,623	c.f.
		Total Rech	arge Volur	ne Provideo	t	=	180,331	c.f.
		<u>180,331</u>	<u>c.f.</u>	<u>></u>	<u>39,258</u>	<u>c.f.</u>	<u>OK</u>	
			=	<u>785,157</u>		=	100%	
				785,157				
	Total Impervious area							

Water Quality Volume Calculations

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1A (IB-1A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.61 acres 26,592 s.f.

Required Water Quality Volume

V=	= 2	6,592	s.f. x	<u>1</u>	=	2,216	c.f.
				12			

Volume Provided 7,171 c.f.

7,171	c.f. >	2.216	c.f. O.K.
<i>,,_,</i> _	C.1. P	2,210	

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1B (IB-1B)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.61 acres 26,702 s.f.

Required Water Quality Volume

V= 26,702 s.f. x $\underline{1}$ = **2,225 c.f.** 12

Volume Provided 6,649 c.f.

6,649 c.f. > 2,225 c.f. O.K.

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1C (IB-1C)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.45 acres 19,524 s.f.

Required Water Quality Volume

V= 19,524 s.f. x <u>1</u> 12	=	1,627	c.f.
---------------------------------	---	-------	------

Volume Provided 4,528 c.f.

4,528	c.f. >	1.627	c.f. O.K.
.,	•••••	_,	••••••

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1D (IB-1D)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.42 acres 18,184 s.f.

Required Water Quality Volume

V=	18,184	s.f. x	<u>1</u>	=	1,515	c.f.
			12			

Volume Provided 4,728 c.f.

c.f. >	1,515	c.f. O.K.
	c.f. >	c.f. > 1,515

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1E (IB-1E)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 1.94 acres 84,698 s.f.

Required Water Quality Volume

V=	84,698	s.f. x	<u>1</u>	=	7,058	c.f.
			12			

Volume Provided 26,816 c.f.

26,816	c.f. >	7,058	c.f. O.K.

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1F (IB-1F)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 1.65 acres 71,790 s.f.

Required Water Quality Volume

V=	71,790	s.f. x	<u>1</u>	=	5,983	c.f.
			12			

Volume Provided 18,676 c.f.

18,676 c.f. > 5,983 c.f. O.K.

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 1E (IB-1E)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 1.10 acres 47,811 s.f.

Required Water Quality Volume

V=	47,811	s.f. x	<u>1</u>	=	3,984	c.f.
			12			

Volume Provided 10,951 c.f.

10,951	c.f. >	3,984	c.f. O.K.	

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 1H (SC-1H)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.84 acres 36,667 s.f.

Required Water Quality Volume

12		V=	36,667	s.f. x	<u>1</u> 12	=	3,056	c.f.
----	--	----	--------	--------	----------------	---	-------	------

Volume Provided 6,111 c.f.

6,111 c.f. > 3,056 c.f. O.K.

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 1I (SC-1I)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.43 acres 18,552 s.f.

Required Water Quality Volume

V= 18,552 s.f. x <u>1</u> 12	= 1,546 c.f.
---------------------------------	--------------

Volume Provided 2,267 c.f.

	4 5 4 6	
°T >	1 546	c.f. O.K.
	1,340	C.I. O.K.
	c.t. >	c.f. > 1,546

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 1J (SC-1J)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.48 acres 20,815 s.f.

Required Water Quality Volume

١	/=	20,815	s.f. x	<u>1</u>	=	1,735	c.f.
				12			

Volume Provided 3,564 c.f.

2 5 6 4		4 705	
3,564	c.t. >	1.735	c.f. O.K.
3,304	0.11.2	1,733	

Water Quality Volume Calculations

Job: SM-6781

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 2A (SC-2A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.43 acres 18,948 s.f.

Required Water Quality Volume

V= 18,948 s.f. x <u>1</u> 12	=	1,579	c.f.
---------------------------------	---	-------	------

Volume Provided 3,659 c.f.

		4 5 7 0	
3.659	c.t. >	1,579	c.f. O.K.
0,000	0	±,575	

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 3A (SC-3A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 1.34 acres 58,169 s.f.

Required Water Quality Volume

V=	58,169	s.f. x	<u>1</u>	=	4,847	c.f.
			12			

Volume Provided 16,124 c.f.

16,124 c.f. > 4,847 c.f. O.K.

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 3B (SC-3B)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 1.00 acres 43,730 s.f.

Required Water Quality Volume

V=	43,730	s.f. x	<u>1</u>	=	3,644	c.f.
			12			

Volume Provided 11,515 c.f.

11,515	c.f. >	3,644	c.f. O.K.

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 4A (SC-4A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.26 acres 11,538 s.f.

Required Water Quality Volume

V= 11,538	s.f. x	<u>1</u> 12	=	962	c.f.
-----------	--------	----------------	---	-----	------

Volume Provided 2,159 c.f.

2,159	c.f. >	962	c.f. O.K.

Water Quality Volume Calculations

Job: SM-6781

Calculated by: PFK Date: 12/12/2023

Subsurface Chambers 5A (SC-5A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.26 acres 11,538 s.f.

Required Water Quality Volume

V= 11,538 s.f. x	<u>1</u> 12	=	962	c.f.
------------------	----------------	---	-----	------

Volume Provided 1,032 c.f.

1,032	c.f. >	962	c.f. O.K.

Calculated by: PFK Date: 12/12/2023

INFILTRATION BASIN 6A (IB-6A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.63 acres 27,456 s.f.

Required Water Quality Volume

V= 27,456 s.f. x $\underline{1}$ = **2,288 c.f.** 12

Volume Provided 6,936 c.f.

6,936 c.f. > 2,288 c.f. O.K.

Calculated by: PFK Date: 12/12/2023

Roof Drywell A (RD-A)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.03 acres 1,308 s.f.

Required Water Quality Volume

12		V=	1,308	s.f. x	<u>1</u> 12	=	109	c.f.
----	--	----	-------	--------	----------------	---	-----	------

Volume Provided 220 c.f.

220	c.f. >	109	c.f. O.K.
			•••••

Calculated by: PFK Date: 12/12/2023

Roof Drywell B (RD-B)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.06 acres 2,547 s.f.

Required Water Quality Volume

V=	2,547	s.f. x	<u>1</u>	=	212	c.f.
			12			

Volume Provided 440 c.f.

440	. 1 .	212	c.f. O.K.
440	C.T. >		с.т. О.К.
	•••••		

Calculated by: PFK Date: 12/12/2023

Roof Drywell C (RD-C)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.04 acres 1,791 s.f.

Required Water Quality Volume

V	= '	1,791	s.f. x	<u>1</u>	=	149	c.f.
				12			

Volume Provided 330 c.f.

330	c.f. >	149	c.f. O.K.

Calculated by: PFK Date: 12/12/2023

Roof Drywell A (RD-E)

Soils: SAND Hydrologic Group: A Required First Flush Volume 1 inch of runoff x impervious area (Chapter X)

Impervious area: 0.25 acres 11,083 s.f.

Required Water Quality Volume

V=	11,083	s.f. x	<u>1</u>	=	924	c.f.
			12			

Volume Provided 2,172 c.f.

2 1 7 2	cf >	924	c.f. O.K.
2,1/2	C.1. 2	724	C.I. O.K.

Groundwater Mounding Calculations

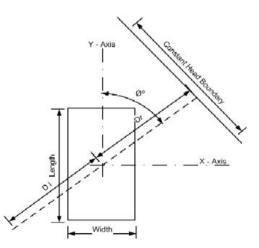
Groundwater Mounding Analysis

Project: The Residences at Stow Acres Location: STOW, MA

	Length of Application (ft)	Width of Application (ft)	Bottom Area (s.f.)	Required Recharge Volume (c.f.)	Application Rate (c.f./day/s.f.)	Duration of Application	Dorocity tor	Hydraulic Conductivity (ft/day)	Bottom of Structure Elevation	Average Depth of Ledge (ft)	E.S.H.G.W.	Initial Saturated Thickness Used (ft)	Mound Height
IB-1A	40	25.525	1,021	1330	1.30				228.5	Unknown	2' DEPTH	9	0.94
IB-1B	50	24.88	1,244	1335	1.07				227.0	Unknown	2' DEPTH	9	0.86
IB-1C	25	26.8	670	976	1.46				224.0	Unknown	2' DEPTH	9	0.95
IB-1D	30	27.77	833	909	1.09				223.0	Unknown	2' DEPTH	9	0.83
IB-1E	150	18.39	2,759	4235	1.54				221.0	Unknown	2' DEPTH	9	1.57
IB-1F	189.14	21	3,972	3590	0.90				222.0	Unknown	2' DEPTH	9	1.05
IB-1G	110	20.04	2,204	2391	1.08				219.0	Unknown	2' DEPTH	9	1.14
SC-1H	74.53	49	3,652	1833	0.50	1 day	0.28	39	217.0	Unknown	2' DEPTH	9	0.92
SC-1I	67.41	20.5	1,382	928	0.67	i uay	0.20	35	217.0	Unknown	2' DEPTH	9	0.62
SC-1J	53.17	34.75	1,848	1041	0.56				221.5	Unknown	2' DEPTH	9	0.70
SC-2A	78.12	15.58	1,217	947	0.78				224.0	Unknown	2' DEPTH	9	0.60
SC-3A	113.97	44.25	5,043	2908	0.58				225.3	Unknown	2' DEPTH	9	1.13
SC-3B	63.78	51.42	3,280	2187	0.67				221.3	Unknown	2' DEPTH	9	1.18
SC-4A	60.29	17.75	1,070	577	0.54				219.5	Unknown	2' DEPTH	9	0.43
SC-5A	31.81	15.75	501	577	1.15				229.0	Unknown	2' DEPTH	9	0.58
SC-6A	76.88	15	1,153	1373	1.19				228.0	Unknown	2' DEPTH	9	0.89

Application Rate =	Required Recharge
	D

ed Recharge Volume Bottom Area


- **Duration of Application =** 1 day for analysis of 24-hour storm events
- **Fillable Porosity =** Value based on soil classification from attached table

Hydraulic Conductivity = Value taken from attached table

Initial Saturated Thickness = Depth from bottom of test pit to estimated seasonal high groundwater (ESHGW)

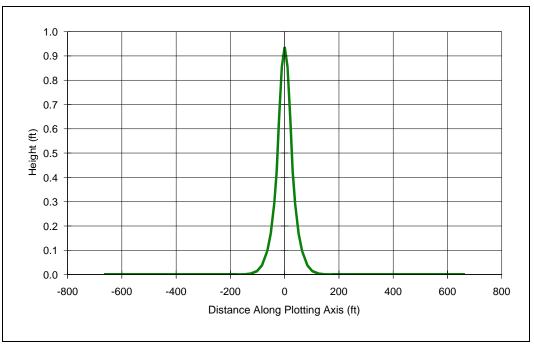
Distance to Constant Head Boundary (Di & Dr): Ponds used as constant head boundary

Angle from z-axis (Ø):

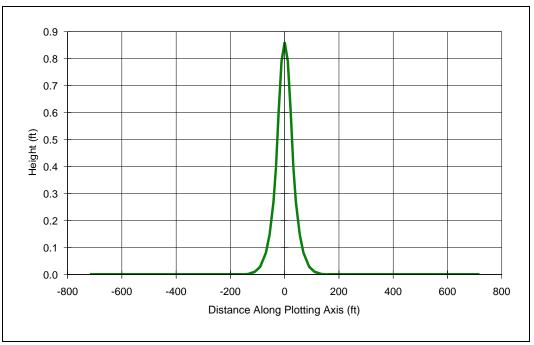
SM-6781

Date: 12/12/2023

By: PFK


SPECIFIC	YIELD	VALUES	5 (%)
	STATISTICS AND	A REAL PROPERTY AND A REAL	LISSE DOUBLE

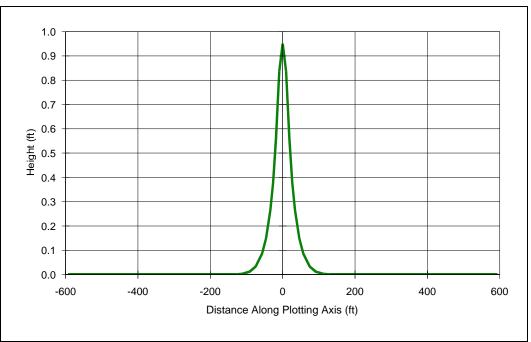
0.23 0.24 0.25
0.27 0.28 0.23
0.08
0.03


HYDRAULIC CONDUCTIVITY VALUES (FT/DAY)

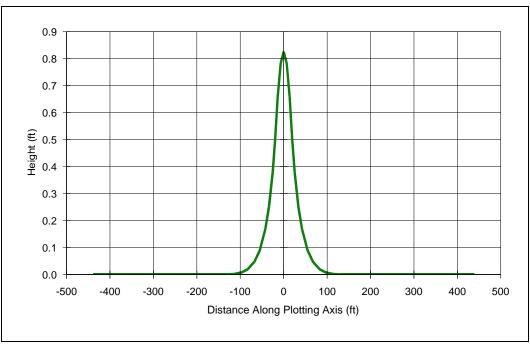
MATERIA	L	AVER	AGE	RANGE	
Fine gravel	Sec. A M	1476	A Station - A	1181 - 3280	
Medium gr	avel	886	A. A.	689 - 1181	+
Coarse gra	vel	492	States and the	328 - 689	
Coarse san	đ	148	Same And	65 - 328	
Medium sa	nd	39	X7 X	16 - 65	
Fine sand	- d	8		3 - 16	
Silt	Same and	0.3		0.03 - 3	
Clay		0.0007		<0.03	
S & G mix	1. 1.5	172	X tool X	16 - 328	S. Star
S & G glad	rial till		the state of	<100	-
Glacial till				<10	
	E Charles				

*Mass DEP Groundwater Mounding for Systems Larger than 2,000 GPD Presentation

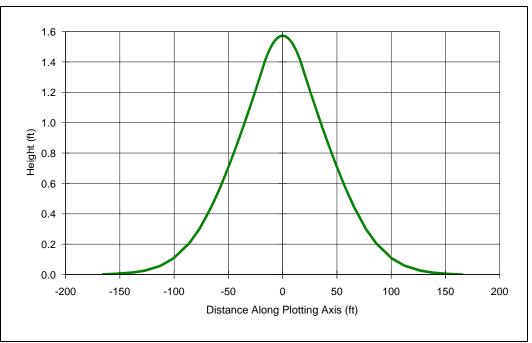
		MODEL RE	ESULTS	
COMPANY: Stamski and McNary, Inc.			Dist	Maximal
PROJECT: IB-1A	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: PFK	(10)	(11)	(11)	(1)
DATE: 12/15/2023 TIME: 3:32:22 PM INPUT PARAMETERS	-330 -277.5 -225 -172.6	-571.6 -480.7 -389.8 -298.9	-660 -555 -450 -345	0 0 0 0
Application rate: 1.3 c.ft/day/sq. ft Duration of application: 1 days Fillable porosity: 0.28 Hydraulic conductivity: 39 ft/day Initial saturated thickness: 9 ft Length of application area: 40 ft Width of application area: 25.525 ft Constant head boundary used at: 660 ft Plotting axis from Y-Axis: 30 degrees Edge of recharge area: positive X: 11.5 ft	-131.3 -99.3 -73.2 -51.1 -32 -19.1 -10.4 0 10.4 19.1 32 51.1	-227.4 -172 -126.8 -88.5 -55.4 -33.2 -18 0 18 33.2 55.4 88.5	-263 -199 -146 -102 -64 -38 -21 0 21 38 64 102	0 0 0.01 0.1 0.3 0.64 0.94 0.64 0.3 0.1 0.01
positive Y: 20 ft Total volume applied: 1327.3 c.ft	73.2 99.3 131.3 172.6 225 277.5 330	126.8 172 227.4 298.9 389.8 480.7 571.6	146 199 263 345 450 555 660	0 0 0 0 0 0 0

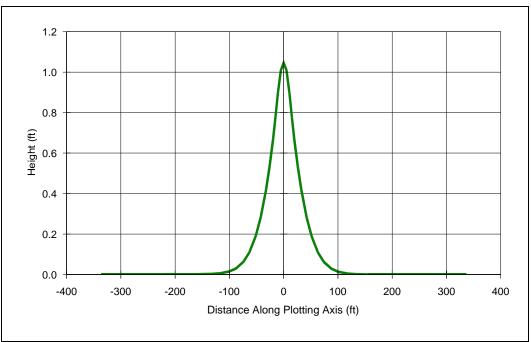

COMPANY: Stamski and McNary, Inc.		MODEL RE	ESULTS	
			Plot	Mound
PROJECT: IB-1B	Х	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK				_
	-356	-616.6	-712	0
DATE: 12/15/2023 TIME: 3:35:20 PM	-299.4	-518.6	-599	0
	-242.8	-420.5	-486	0
INPUT PARAMETERS	-186.2	-322.4	-372	0
Application rates 1.07 of t/day/ag ft	-141.7 -107.2	-245.3	-283	0 0
Application rate: 1.07 c.ft/day/sq. ft Duration of application: 1 days	-79	-185.6 -136.8	-214 -158	0
Fillable porosity: 0.28	-79 -55.1	-95.5	-110	0.01
Hydraulic conductivity: 39 ft/day	-34.5	-59.7	-69	0.01
Initial saturated thickness: 9 ft	-20.6	-35.8	-09 -41	0.08
Length of application area: 50 ft	-11.2	-19.4	-22	0.6
Width of application area: 24.88 ft	0	0	0	0.86
Constant head boundary used at: 712 ft	11.2	19.4	22	0.6
Plotting axis from Y-Axis: 30 degrees	20.6	35.8	41	0.27
Edge of recharge area:	34.5	59.7	69	0.08
positive X: 12.4 ft	55.1	95.5	110	0.01
positive Y: 21.5 ft	79	136.8	158	0
Total volume applied: 1331.08 c.ft	107.2	185.6	214	0
	141.7	245.3	283	0
	186.2	322.4	372	0
	242.8	420.5	486	0
	299.4	518.6	599	0

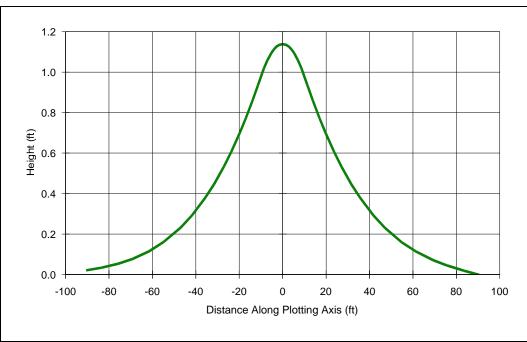
356

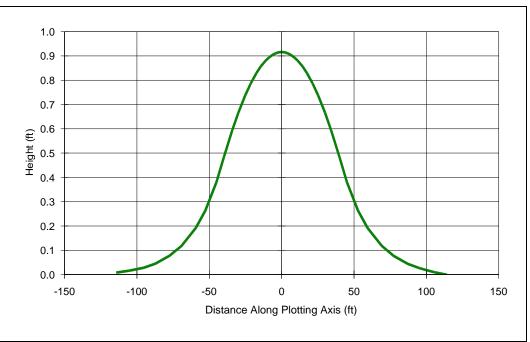

616.6

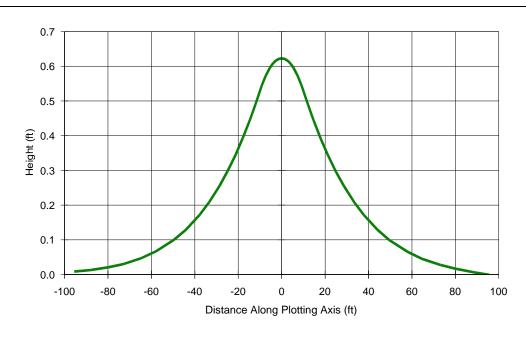
712

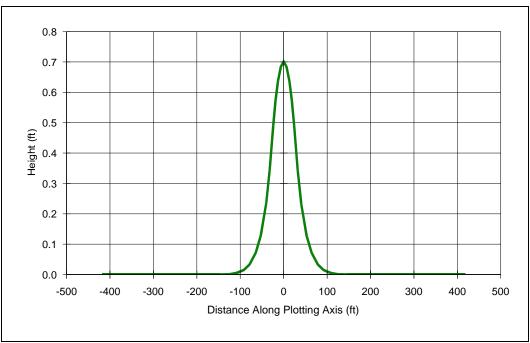

0

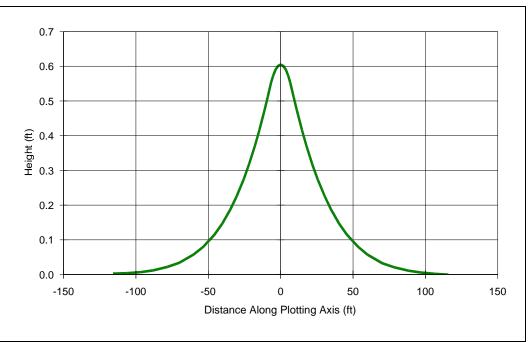

		MODEL RI	ESULTS	
COMPANY: Stamski and McNary, Inc.				N 4
PROJECT: IB-1C	X	Y	Plot Axis	Mound Height
ANALYST: PFK	(ft)	(ft)	(ft)	(ft)
ANALISI. FIR	-294.5	-510.1	-589	0
DATE: 12/15/2023 TIME: 3:37:37 PM	-247.7	-429	-495	Ő
	-200.8	-347.8	-402	0
INPUT PARAMETERS	-154	-266.7	-308	0
	-117.2	-203	-234	0
Application rate: 1.46 c.ft/day/sq. ft	-88.6	-153.5	-177	0
Duration of application: 1 days	-65.3	-113.1	-131	0
Fillable porosity: 0.28	-45.6	-79	-91	0.01
Hydraulic conductivity: 39 ft/day Initial saturated thickness: 7 ft	-28.5 -17.1	-49.4 -29.6	-57 -34	0.09 0.26
Length of application area: 25 ft	-9.3	-29.0	-19	0.20
Width of application area: 26.8 ft	0	0	0	0.95
Constant head boundary used at: 589 ft	9.3	16.1	19	0.56
Plotting axis from Y-Axis: 30 degrees	17.1	29.6	34	0.26
Edge of recharge area:	28.5	49.4	57	0.09
positive X: 7.2 ft	45.6	79	91	0.01
positive Y: 12.5 ft	65.3	113.1	131	0
Total volume applied: 978.2 c.ft	88.6	153.5	177	0
	117.2	203	234	0
	154	266.7	308	0
	200.8	347.8	402	0
	247.7 294.5	429 510.1	495 589	0 0
	294.5	510.1	009	0

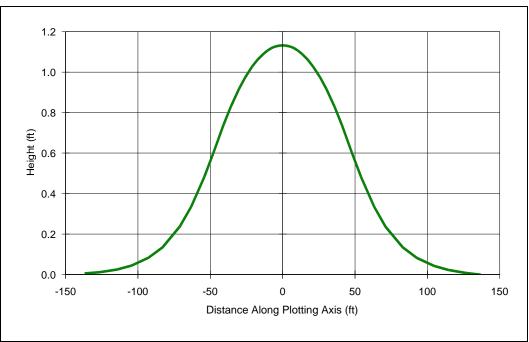

COMPANIX: Stomaki and MaNary Inc.		MODEL RE	SULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: IB-1D	X	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK				
DATE: 12/15/2023 TIME: 3:39:12 PM	-218	-377.6	-436	0
	-183.3	-317.6	-367	0
INPUT PARAMETERS	-148.7	-257.5	-297	0
	-114	-197.4	-228	0
Application rate: 1.09 c.ft/day/sq. ft	-86.7	-150.2	-173	0
	-65.6	-113.7	-131	0
Duration of application: 1 days	-48.4	-83.7	-97	0.01
Fillable porosity: 0.28	-33.8	-58.5	-68	0.05
Hydraulic conductivity: 39 ft/day	-21.1	-36.6	-42	0.17
Initial saturated thickness: 7 ft	-12.6	-21.9	-25	0.38
Length of application area: 30 ft	-6.9	-11.9	-14	0.66
Width of application area: 27.77 ft	0	0	0	0.83
Constant head boundary used at: 436 ft	6.9	11.9	14	0.66
Plotting axis from Y-Axis: 30 degrees	12.6	21.9	25	0.38
Edge of recharge area:	21.1	36.6	42	0.17
positive X: 8.7 ft	33.8	58.5	68	0.05
positive Y: 15 ft	48.4	83.7	97	0.01
Total volume applied: 908.079 c.ft	65.6	113.7	131	0
	86.7	150.2	173	0
	114	197.4	228	0
	148.7	257.5	297	0
	183.3	317.6	367	0
	218	377.6	436	0

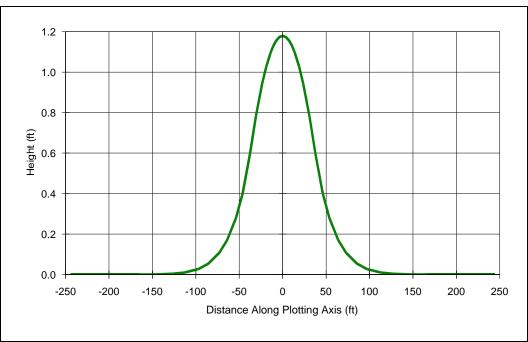

COMPANY: Stamply and MaNary Inc.		MODEL RE	SULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: IB-1E	X	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK				
DATE: 12/15/2023 TIME: 3:41:19 PM	-82.5	-142.9	-165	0
	-69.4	-120.2	-139	0.01
INPUT PARAMETERS	-56.3	-97.4	-113	0.06
	-43.1	-74.7	-86	0.2
	-32.8	-56.9	-66	0.45
Application rate: 1.54 c.ft/day/sq. ft	-24.8	-43	-50	0.71
Duration of application: 1 days	-18.3	-31.7	-37	0.97
Fillable porosity: 0.28	-12.8	-22.1	-26	1.2
Hydraulic conductivity: 39 ft/day	-8	-13.8	-16	1.41
Initial saturated thickness: 7 ft	-4.8	-8.3	-10	1.52
Length of application area: 150 ft	-2.6	-4.5	-5	1.56
Width of application area: 18.39 ft	0	0	0	1.57
Constant head boundary used at: 165 ft	2.6	4.5	5	1.56
Plotting axis from Y-Axis: 30 degrees	4.8	8.3	10	1.52
Edge of recharge area:	8	13.8	16	1.41
positive X: 9.2 ft	12.8	22.1	26	1.2
positive Y: 15.9 ft	18.3	31.7	37	0.97
Total volume applied: 4248.09 c.ft	24.8	43	50	0.71
	32.8	56.9	66	0.45
	43.1	74.7	86	0.2
	56.3	97.4	113	0.06
	69.4	120.2	139	0.01
	82.5	142.9	165	0

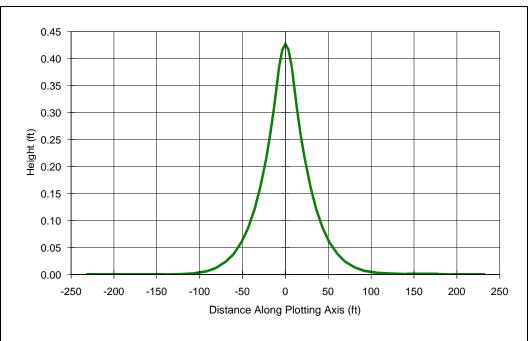

		MODEL	RESULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: IB-1F	x	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK	()		()	
	-334	0	-334	0
DATE: 12/15/2023 TIME: 3:42:47 PM	-280.9	0	-281	0
	-227.8	0	-228	0
INPUT PARAMETERS	-174.6	0	-175	0
	-132.9	0	-133	0
Application rate: 0.9 c.ft/day/sq. ft	-100.5	0	-101	0.02
Duration of application: 1 days	-74.1	0	-74	0.06
Fillable porosity: 0.28 Hydraulic conductivity: 39 ft/day	-51.7 -32.4	0	-52 -32	0.19 0.42
Initial saturated thickness: 7 ft	-32.4 -19.4	0 0	-32 -19	0.42
Length of application area: 189.14 ft	-10.5	0	-15	0.9
Width of application area: 21 ft	0	0	0	1.05
Constant head boundary used at: 334 ft	10.5	0 0	11	0.9
Plotting axis from Y-Axis: 90 degrees	19.4	0	19	0.67
Edge of recharge area:	32.4	0	32	0.42
positive X: 10.5 ft	51.7	0	52	0.19
positive Y: 0 ft	74.1	0	74	0.06
Total volume applied: 3574.746 c.ft	100.5	0	101	0.01
	132.9	0	133	0
	174.6	0	175	0
	227.8	0	228	0
	280.9	0	281	0
	334	0	334	0

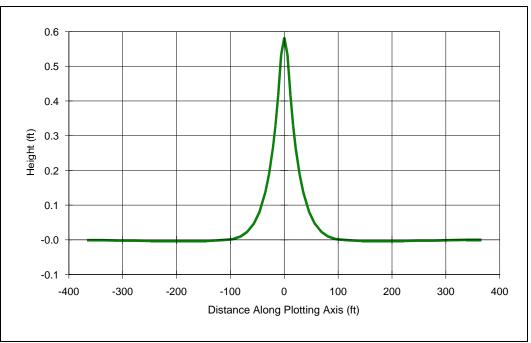

COMPANY: Stamski and McNary, Inc.		MODELI	RESULTS	
PROJECT: IB-1G	х	Y	Plot Axis	Mound Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK	-90	0	-90	0.02
DATE: 12/15/2023 TIME: 3:43:47 PM	-50 -75.7 -61.4	0	-30 -76 -61	0.02 0.05 0.12
INPUT PARAMETERS	-47.1 -35.8	0	-47 -36	0.12 0.23 0.38
Application rate: 1.08 c.ft/day/sq. ft	-27.1	0	-27	0.53
Duration of application: 1 days Fillable porosity: 0.28	-20 -13.9	0 0	-20 -14	0.7 0.86
Hydraulic conductivity: 39 ft/day Initial saturated thickness: 7 ft	-8.7 -5.2	0 0	-9 -5	1.02 1.09
Length of application area: 110 ft	-2.8	0	-3	1.13 1.14
Width of application area: 20.04 ft Constant head boundary used at: 90 ft	0 2.8	0 0	0 3	1.14
Plotting axis from Y-Axis: 90 degrees	5.2	0	5	1.1
Edge of recharge area: positive X: 10 ft	8.7 13.9	0 0	9 14	1.02 0.86
positive Y: 0 ft	20	0	20	0.7
Total volume applied: 2380.752 c.ft	27.1 35.8	0 0	27 36	0.53 0.38
	47.1	0	47	0.23
	61.4 75.7	0 0	61 76	0.11 0.04
	90	0	90	0


		MODEL R	ESULTS	
COMPANY: Stamski and McNary, Inc.			_	
PROJECT: SC-1H	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: PFK	(11)	(11)	(11)	(11)
	-56.7	-98.3	-114	0.01
DATE: 12/15/2023 TIME: 3:57:36 PM	-47.7	-82.7	-95	0.03
	-38.7	-67	-77	0.08
INPUT PARAMETERS	-29.7	-51.4	-59	0.19
	-22.6	-39.1	-45	0.38
Application rate: 0.5 c.ft/day/sq. ft	-17.1	-29.6	-34	0.59
Duration of application: 1 days	-12.6 -8.8	-21.8 -15.2	-25 -18	0.74 0.83
Fillable porosity: 0.28 Hydraulic conductivity: 39 ft/day	-0.0 -5.5	-15.2 -9.5	-10 -11	0.88
Initial saturated thickness: 7 ft	-3.3	-9.3 -5.7	-7	0.88
Length of application area: 74.53 ft	-1.8	-3.1	-4	0.91
Width of application area: 49 ft	0	0	0	0.92
Constant head boundary used at: 113.5 ft	1.8	3.1	4	0.91
Plotting axis from Y-Axis: 30 degrees	3.3	5.7	7	0.9
Edge of recharge area:	5.5	9.5	11	0.88
positive X: 21.5 ft	8.8	15.2	18	0.83
positive Y: 37.3 ft	12.6	21.8	25	0.74
Total volume applied: 1825.985 c.ft	17.1	29.6	34	0.59
	22.6	39.1	45	0.38
	29.7	51.4	59	0.19
	38.7 47.7	67 82.7	77 95	0.08
	47.7 56.7	98.3	95 114	0.03 0
	50.7	50.5	114	U


COMPANY: Stamski and McNary, Inc.		MODELI	RESULTS	
PROJECT: SC-11	х	Y	Plot	Mound
	x (ft)	r (ft)	Axis (ft)	Height (ft)
ANALYST: PFK	-95	0	05	0.01
DATE: 12/15/2023 TIME: 3:59:14 PM	-95 -79.9 -64.8	0 0 0	-95 -80 -65	0.02 0.05
INPUT PARAMETERS	-04.8 -49.7 -37.8	0 0	-50 -38	0.03 0.1 0.17
Application rate: 0.67 c.ft/day/sq. ft	-28.6	0	-38 -29 -21	0.26
Duration of application: 1 days Fillable porosity: 0.28	-21.1 -14.7	0 0	-15	0.35 0.44
Hydraulic conductivity: 39 ft/day Initial saturated thickness: 7 ft	-9.2 -5.5	0 0	-9 -6	0.54 0.6
Length of application area: 67.41 ft Width of application area: 20.5 ft	-3 0	0 0	-3 0	0.62 0.62
Constant head boundary used at: 95 ft	3	0	3	0.62
Plotting axis from Y-Axis: 90 degrees Edge of recharge area:	5.5 9.2	0 0	6 9	0.6 0.54
positive X: 10.2 ft	14.7	0	15	0.44
positive Y: 0 ft Total volume applied: 925.8764 c.ft	21.1 28.6	0 0	21 29	0.35 0.26
	37.8	0	38	0.17
	49.7 64.8	0 0	50 65	0.1 0.04
	79.9	0	80	0.02
	95	0	95	0


		MODEL RE	ESULTS	
COMPANY: Stamski and McNary, Inc.			_	
PROJECT: SC-1J	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: PFK	(10)	(11)	(11)	(11)
DATE: 12/15/2023 TIME: 4:00:26 PM	-207.5 -174.5 -141.5	-359.4 -302.3 -245.1	-415 -349 -283	0 0 0
INPUT PARAMETERS	-108.5	-187.9	-217	0
Application rate: 0.56 c.ft/day/sq. ft Duration of application: 1 days Fillable porosity: 0.28 Hydraulic conductivity: 39 ft/day Initial saturated thickness: 7 ft Length of application area: 53.17 ft Width of application area: 34.75 ft Constant head boundary used at: 415 ft Plotting axis from Y-Axis: 30 degrees Edge of recharge area: positive X: 15.3 ft positive Y: 26.6 ft	-82.6 -62.5 -46 -32.1 -20.1 -12 -6.5 0 6.5 12 20.1 32.1 46	-143 -108.2 -79.7 -55.7 -34.8 -20.8 -11.3 0 11.3 20.8 34.8 55.7 79.7	-165 -125 -92 -64 -40 -24 -13 0 13 24 40 64 92	0 0 0.02 0.07 0.24 0.49 0.64 0.7 0.64 0.49 0.24 0.24 0.07 0.02
Total volume applied: 1034.688 c.ft	40 62.5 82.6 108.5 141.5 174.5 207.5	108.2 143 187.9 245.1 302.3 359.4	92 125 165 217 283 349 415	0.02 0 0 0 0 0 0


		MODEL	RESULTS	
COMPANY: Stamski and McNary, Inc.	•			
PROJECT: SC-2A	X (ft)	Y (ft)	Plot Axis (ft)	Mound Height (ft)
ANALYST: PFK	(14)	(11)	(14)	(11)
	-115	0	-115	0
DATE: 12/15/2023 TIME: 4:01:27 PM	-96.7	0	-97	0.01
	-78.4	0	-78	0.02
INPUT PARAMETERS	-60.1	0	-60	0.06
	-45.8	0	-46	0.12
Application rate: 0.78 c.ft/day/sq. ft	-34.6	0	-35	0.19
Duration of application: 1 days	-25.5 -17.8	0 0	-26 -18	0.28 0.37
Fillable porosity: 0.28 Hydraulic conductivity: 39 ft/day	-17.0	0	-10 -11	0.37
Initial saturated thickness: 7 ft	-6.7	0	-7	0.55
Length of application area: 78.12 ft	-3.6	Ő	-4	0.59
Width of application area: 15.58 ft	0	0 0	0	0.6
Constant head boundary used at: 115 ft	3.6	0	4	0.59
Plotting axis from Y-Axis: 90 degrees	6.7	0	7	0.55
Edge of recharge area:	11.1	0	11	0.47
positive X: 7.8 ft	17.8	0	18	0.37
positive Y: 0 ft	25.5	0	26	0.28
Total volume applied: 949.3455 c.ft	34.6	0	35	0.19
	45.8	0	46	0.12
	60.1	0	60 70	0.06
	78.4 96.7	0	78 97	0.02 0.01
	96.7 115	0 0	97 115	0.01


COMPANY: Stamply and MaNary Inc.		MODEL RE	SULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: SC-3A	X	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK				
DATE: 12/15/2023 TIME: 4:02:30 PM	-68	-117.8	-136	0.01
	-57.2	-99.1	-114	0.02
	-46.4	-80.3	-93	0.08
INPUT PARAMETERS	-40.4	-60.3	-93	0.08
	-35.6	-61.6	-71	0.24
	-27.1	-46.9	-54	0.48
Application rate: 0.58 c.ft/day/sq.ft	-20.5	-35.5	-41	0.74
Duration of application: 1 days	-15.1	-26.1	-30	
Fillable porosity: 0.28	-10.5	-18.2	-21	1.03
Hydraulic conductivity: 39 ft/day	-6.6	-11.4	-13	1.09
Initial saturated thickness: 7 ft	-3.9	-6.8	-8	1.12
Length of application area: 113.97 ft	-2.1	-3.7	-4	1.13
Width of application area: 44.25 ft	0	0	0	1.13
Constant head boundary used at: 136 ft	2.1	3.7	4	1.13
	3.9	6.8	8	1.12
Plotting axis from Y-Axis: 30 degrees Edge of recharge area:	6.6	11.4	13	1.09
positive X: 22.1 ft	10.5	18.2	21	1.03
positive Y: 38.3 ft	15.1	26.1	30	0.92
Total volume applied: 2925.04 c.ft	20.5	35.5	41	0.74
	27.1	46.9	54	0.48
	35.6	61.6	71	0.24
	46.4	80.3	93	0.08
	57.2	99.1	114	0.02
	68	117.8	136	0

COMPANIX: Stamply and Manager Inc.		MODEL RE	SULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: SC-3B	X	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK	-121.5	-210.4	-243	0
DATE: 12/15/2023 TIME: 4:03:59 PM	-102.2 -82.9	-177 -143.5	-204 -166	0
INPUT PARAMETERS	-63.5	-110	-127 -97	0
Application rate: 0.67 c.ft/day/sq. ft	-48.3 -36.6	-83.7 -63.3	-73	0.03 0.11
Duration of application: 1 days	-26.9	-46.7	-54	0.28
Fillable porosity: 0.28	-18.8	-32.6	-38	0.6
Hydraulic conductivity: 39 ft/day	-11.8	-20.4	-24	0.94
Initial saturated thickness: 7 ft	-7	-12.2	-14	1.09
Length of application area: 63.78 ft	-3.8	-6.6	-8	1.15
Width of application area: 51.42 ft	0	0	0	1.18
Constant head boundary used at: 243 ft	3.8	6.6	8	1.15
Plotting axis from Y-Axis: 30 degrees	7	12.2	14	1.09
Edge of recharge area:	11.8	20.4	24	0.94
positive X: 18.4 ft	18.8	32.6	38	0.6
positive Y: 31.9 ft	26.9	46.7	54	0.28
Total volume applied: 2197.31 c.ft	36.6	63.3	73	0.11
	48.3	83.7	97	0.03
	63.5	110	127	0
	82.9	143.5	166	0
	102.2	177	204	0
	121.5	210.4	243	0

COMPANIX: Stamply and MaNary Inc.		MODEL	RESULTS	
COMPANY: Stamski and McNary, Inc.			Plot	Mound
PROJECT: SC-4A	X	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK		_		
DATE: 12/15/2023 TIME: 4:05:09 PM	-231	0	-231	0
	-194.3	0	-194	0
INPUT PARAMETERS	-157.5	0	-158	0
	-120.8	0	-121	0
Application rate: 0.54 c.ft/day/sq.ft	-91.9	0	-92	0.01
	-69.5	0	-70	0.02
Duration of application: 1 days	-51.2	0	-51	0.06
Fillable porosity: 0.28	-35.8	0	-36	0.12
Hydraulic conductivity: 39 ft/day	-22.4	0	-22	0.22
Initial saturated thickness: 7 ft	-13.4	0	-13	0.31
Length of application area: 60.29 ft	-7.3	0	-7	0.39
Width of application area: 17.75 ft	0	0	0	0.43
Constant head boundary used at: 231 ft	7.3	0	7	0.39
Plotting axis from Y-Axis: 90 degrees	13.4	0	13	0.31
Edge of recharge area:	22.4	0	22	0.22
positive X: 8.9 ft	35.8	0	36	0.12
positive Y: 0 ft	51.2	0	51	0.06
Total volume applied: 577.8796 c.ft	69.5	0	70	0.02
·····	91.9	0	92	0.01
	120.8	0	121	0
	157.5	0	158	0
	194.3	0	194	0
	231	0	231	0

COMPANY: Stamski and McNary, Inc.		MODELI	RESULTS	
COMPANY. Staniski and Menary, inc.			Plot	Mound
PROJECT: SC-5A	Х	Y	Axis	Height
	(ft)	(ft)	(ft)	(ft)
ANALYST: PFK	-364	0	-364	0
DATE: 12/15/2023 TIME: 4:06:26 PM	-304 -306.1	0	-306	0
	-248.2	Õ	-248	0 0
INPUT PARAMETERS	-190.3	0	-190	0
	-144.8	0	-145	0
Application rate: 1.15 c.ft/day/sq. ft Duration of application: 1 days	-109.6 -80.7	0 0	-110 -81	0 0.01
Fillable porosity: 0.28	-56.4	0	-56	0.01
Hydraulic conductivity: 39 ft/day	-35.3	0 0	-35	0.14
Initial saturated thickness: 7 ft	-21.1	0	-21	0.26
Length of application area: 31.81 ft	-11.5	0	-11	0.42
Width of application area: 15.75 ft Constant head boundary used at: 364 ft	0 11.5	0 0	0 11	0.58 0.42
Plotting axis from Y-Axis: 90 degrees	21.1	0	21	0.42
Edge of recharge area:	35.3	0 0	35	0.14
positive X: 7.9 ft	56.4	0	56	0.05
positive Y: 0 ft	80.7	0	81	0.01
Total volume applied: 576.1586 c.ft	109.6 144.8	0 0	110 145	0 0
	190.3	0	190	0
	248.2	0	248	Ő
	306.1	0	306	0
	364	0	364	0

COMPANY: Stamski and McNary, Inc.		MODEL	RESULTS	
COMPANT. Statiski and Michary, Inc.			Plot	Mound
PROJECT: IB-6A	X	Y (ft)	Axis	Height
ANALYST: PFK	(ft)	(ft)	(ft)	(ft)
DATE: 12/15/2023 TIME: 4:09:15 PM	-231 -194.3	0 0	-231 -194	0 0
INPUT PARAMETERS	-157.5 -120.8	0 0	-158 -121	0 0
	-91.9	0	-92	0.02
Application rate: 1.19 c.ft/day/sq. ft Duration of application: 1 days	-69.5 -51.2	0 0	-70 -51	0.05 0.13
Fillable porosity: 0.28	-35.8	0	-36	0.27
Hydraulic conductivity: 39 ft/day Initial saturated thickness: 7 ft	-22.4 -13.4	0 0	-22 -13	0.46 0.64
Length of application area: 76.88 ft	-7.3	0	-7	0.8
Width of application area: 15 ft	0	0	0	0.89
Constant head boundary used at: 231 ft Plotting axis from Y-Axis: 90 degrees	7.3 13.4	0 0	7 13	0.8 0.64
Edge of recharge area:	22.4	0	22	0.46
positive X: 7.5 ft	35.8	0	36	0.26
positive Y: 0 ft Total volume applied: 1372.308 c.ft	51.2 69.5	0 0	51 70	0.13 0.05
	91.9	0 0	92	0.02
	120.8 157.5	0	121	0
	194.3	0 0	158 194	0 0
	231	0	231	0

TSS Removal Worksheets

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

A B C D BMP ¹ TSS Removal Starting TSS Amount BMP ¹ TSS Removal Starting TSS Amount BMP ¹ TSS Removal Starting TSS Amount Deep-sump hooded 25% 0.75 0.25 Catch basins 25% 0.75 0.25 Sediment Forebay 25% 0.75 0.25 Project Total TSS Removal 44%	A B C D BMP ¹ TSS Removal Starting TSS Amount Deep-sump hooded 25% 0.75 0.25 Sediment Forebay 25% 0.75 0.25 Project Total TSS Removal 44%		Location:	Location: Infiltration Basins Pretreatment	etreatment		
edt 25% 1.00 0.25 25% 0.75 0.25 25% 0.75 0.25	Deep-sump hooded 25% 1.00 0.25 catch basins 25% 0.75 0.25 Sediment Forebay 25% 0.75 0.25 Vertication 25% 0.75 0.25 Project: 678 67% 67%	-	A BMP ¹	B TSS Removal Rate ¹	C Starting TSS Load*	D Amount Removed (B*C)	E Remaining Load (C-D)
Sediment Forebay 25% 0.75 0.25 1 0.75 0.25 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sediment Forebay 25% 0.75 0.25 1 25% 0.75 0.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2001	Deep-sump hooded catch basins	25%	1.00	0.25	0.75
Project: 6781	Project: 6781 Project: 6781		Sediment Forebay	25%	0.75	0.25	0.56
		PO		Total T	SS Removal =	44%	Separate Form Needs to be Completed for Each Outlet or BMP Train
			Project: 6781				

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Date: 12/12/2023

which enters the BMP

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

E Remaining Load (C-D) 0.20 0.20 Separate Form Needs t be Completed for Each Outlet or BMP Train	D Amount Removed (B*C) 0.80 80%	Total TSS Removal Starting TSS C C C C C C C C C C C C C C C C C C	B TSS Read	A BMP ¹ T etreatment Project: 6781
om previous BMP (E)	*Equals remaining load from previous BMP (E)		ed By: PFK	Prepared By: PFK
			6781	Project:
Separate Form Needs to be Completed for Each Outlet or BMP Train	80%	SS Removal =		
Ternarate Form Noode to				
0.20	0.80	1.00	80%	Infiltration Basin w/ Pretreatment
Remaining Load (C-D)	Amount Removed (B*C)	Starting TSS Load*		BMP ¹
Ш	۵	υ		A
				-coordina

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

A B B TSS Removal Start BMP ¹ Rate ¹ L Deep-sump hooded 25%	D Amount Removed (B*C)	
BMP ¹ TSS Removal BMP ¹ Rate ¹ Deep-sump hooded 25%		ш
Deep-sump hooded 25%		Remaining Load (C-D)
_	0.25	0.75
lsolator Rows 25% 0.75	0.25	0.56
Total TSS Removal =	44%	Separate Form Needs to be Completed for Each Outlet or BMP Train
Project: 6781 Prenared Rv: PFK		
Date: 12/12/2023	*Equals remaining load from previous BMP (E) which enters the BMP	m previous BIMP (E)

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Non-automated: Mar. 4, 2008

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

	D E Amount Remaining noved (B*C) Load (C-D)	0 0.20			Separate Form Needs to be Completed for Each Outlet or BMP Train	*Equals remaining load from previous BMP (E)
	D Amount Removed (B*C)	0.80			80%	*Equals remaining loa
õ	C Starting TSS Load*	1.00			Total TSS Removal =	
Subsurface Chambers	B TSS Removal Rate ¹	80%			Total T	6781 PFK 12/12/2023
Location:	A BMP ¹	Chambers w/ Pretreatment				Project: 6781 Prepared By: PFK

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Mass. Dept. of Environmental Protection

Non-automated: Mar. 4, 2008

Soil Evaluation

		Commonwealth of Massachusetts City/Town of	assachusett	ν. Δ			
]		-orm 11 - Soil S	uitability	Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal	On-Site Sewage D	isposal	
A.	Facility	A. Facility Information					
		TOW HOLDINGS	747				
	Owner Name	O RANNALL ROAD			MAP RII DRUEL	UEL 258-3	
	Street Address	Address		AAA	Map/Lot#		
	City			State	Zip Code		
1		;					
'n	Site In	B. Site Information					
÷	1. (Check one)	ie) 🔲 New Construction	on 🗌 Upgrade	grade DRAINAGE			
5.	Soil Survey	y WEB Soil SURVEY	rey	2538, 2548	HIM	HINCKLEY LOAMY SAND, MERRIMAL FINE SANDY LOAM	CRIMAL FINE SANDY LOAM
	OUTW	OUTWASH TERRIE/DELTA/PLAINS, KANES	ESKERDES NJS, KAMES	Soil Map Uńit	Soil	Soil Series	
	Landform			Soil Limitations			
	HSWMUND	<u>5H</u>					
ъ.	Soil Parent material Surficial Geologi	cal Report	MASS MARRER Year Published/Source	ANER ce	Map	SAND AND GRAVEL Map Unit	
	Description (Description of Geologic Map Unit:					
4.	Flood Rat	Flood Rate Insurance Map	Within a regulatory floodway?	🛛 Yes	No No		
5.	Within a ve	Within a velocity zone?	°N ⊠				
6.	Within a N	Within a Mapped Wetland Area?	🗆 Yes 🕅	🕅 No If yes, N	If yes, MassGIS Wetland Data Layer:	Wetland Tyne	
7.	Current W	Current Water Resource Conditions (USGS):	(NSGS):	11/7/22 Month/Dav/ Year	Range: 🔲 Above Normal	Normal	Below Normal
ω.	Other refe (Zone II, IWF	Other references reviewed: (Zone II, IWPA, Zone A, EEA Data Portal, etc.)					

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal • Page 1 of 5

		nwealth o wn of	Commonwealth of Massachusetts City/Town of	itts								
C Superson		11 - Soi	Form 11 - Soil Suitability		Assessment for On-Site Sewage Disposal	or On-	Site S	sewage	Disp	osal		
C. On	-Site Revi	iew (minin	On-Site Review (minimum of two holes		required at every proposed primary and reserve disposal area) $\frac{1}{2} \int_{a}^{b} \frac{1}{a}$	oposed p	nimary a	and reserv	re dispo	sal area)		
Deel	Deep Observation Hole Number: 11 CL	n Hole Numb	Hole #	Date		Time	8	Weather		Latitude	Longitude	
1. Land Use		GOLF COURSE	COURSE		55				1		5	
Descripti	- 2	oodland, agricutt 1:	(e.g., woodland, agricultural field, vacant lot, etc.) ccation:	tc.)	Vegetation		Surface	e Stones (e.g.,	cobbles, stc	Surface Stones (e.g., cobbles, stones, boulders, etc.)	Slope (%)	
2. Soil F	Soil Parent Material:	*:										
					Landform	L	-	Position on	Landscape (Position on Landscape (SU, SH, BS, FS, TS, Plain)	Plain)	
3. Dista	Distances from:	Opei	Open Water Body _	a A	feet	Drainage Way	e Way	feet		Wetlands	>7/0 feet	
		_	Property Line	7710 feet		Drinking Water Well $\frac{77/60}{}$ feet	er Well	<u>/00</u> feet		Other	feet	
4. Unsı	uitable Materi	als Present:	Unsuitable Materials Present: 🛄 Yes 📝 No	If Yes:	Disturbed Soil/Fill Material	Fill Material		Weathered/Fractured Rock	Fractured I	Sock 🗌 Bedrock	*	
5. Grou	Groundwater Observed:	ived:□ Yes	s No		If yes:	Depth 1	Depth to Weeping in Hole	in Hole		Depth to Standing Water in Hole	g Water in Hole	
					Soi	Soil Log						
Denth (in)	Ŝ	Soil Texture	Soil Matrix: Color-		Redoximorphic Features	res	Coarse % by	Coarse Fragments % by Volume	Soil	Soil Consistence	Other	[
	/ /Layer	(USDA	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)		
2	4	75	10453/2	1	Cnc: Dpt:	((~~~~~	Y	Ц		
24	60	~	10485/6	(Cnc : Dol:	(Manare.	X			
Teachart Record Record Record Record Record Record	U	~	E/5 JKON		Cnc : Dpt:	1	10	5	561	-		1
					Cnc: Dpt:							1
					Cnc :							
					Dpl:			an de ser en				T
					Cne :							
Addit	Additional Notes:				Upr.							٦

CI C	Commonwealt City/Town of Form 11 - \$	onwealth o wn of 11 - Soi	Commonwealth of Massachusetts City/Town of Form 11 - Soil Suitability ,	etts ty A:	Assessment for On-Site Sewage Disposal	ant for	S-nO	ite S	ewage	Disp	osal		
C. On-{	Site Revi	iev (minim	C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area).	les req	required at even $11/7/n^2$	ery propos	sed prii	nary a	nd reserv	e dispo:	sal area)		
				Date	1	Time		We	Weather		Latitude	Longitude	
1. Land Use:		., woodland, agric	(e.g., woodland, agricultural field, vacant lot, etc.)	lot, etc.)	Vegetation	Ē		Surface	Stones (e.g., o	obbles, stor	Surface Stones (e.g., cobbles, stones, boulders, etc.)	Slope (%)	
Descri	Description of Location:	ation:				Ale Print and the second s							
2. Soil Pa	Soil Parent Material:	al:											
						Landform			Position on	Landscape	Position on Landscape (SU, SH, BS, FS, TS, Plain)	S, Plain)	
3. Distan	Distances from:	Opei	Open Water Body		feet	Dr	Drainage Way	Vay	feet		Wetlands	s feet	
		-	Property Line		feet	Drinking Water Well	Water V	Vell	feet		Other	feet	
4. Unsuita	ble Materials	4. Unsuitable Materials Present: 🔲 Yes 🛛 No		If Yes:	Disturbed	Disturbed Soil/Fill Material	rial	≥	Weathered/Fractured Rock	Ictured Ro	ck 🗌 Bedrock		
5. Groun	dwater Obse	Groundwater Observed:	No No No			If yes:		epth to M	Depth to Weeping in Hole	ا م	Depth Standi	Depth Standing Water in Hole	
						Soil Log							
Denth (in)	Soil Horizon	Š	Soil Matrix: Color-		Redoximorphic Features	ic Features		Coarse % by	Coarse Fragments % by Volume	Soil	Soil	Other	
	/Layer	(NDA)	Moist (Munsell)	Depth	Color	Percent		Gravel	Cobbles & Stones	Structure	(Moist)		
21	A	25	10-18-312	(Cnc : Dn ^l ·	3				W	U		
36	В	5	10-12-56	\	Cnc : Dol:			i		56		a de su de la constante de la c	
132	C	~	101R5/3		Cnc :	,		2	2	26			
				 	Cnc : Dpl:								
					Cnc : Dpl:								
					Cnc : Dpt:								
Additic	Additional Notes:			-					1				

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal • Page 3 of 5

Commonwealth of Massachusetts City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

)				co i chr		ind nacoda			nondern D	ai aica)		
	Deep Observation Hole Number: $\frac{1}{1000}$	on Hole Numb	er: <u>TP-7</u> 2-3				:	-				
Ţ	1 I and I lee.		4 aou	Date	lime	ē	3	Weather		Latitude	rouditade	
•		g., woodland, agric	(e.g., woodland, agricultural field, vacant lot,	ot, etc.)	Vegetation		Surface	e Stones (e.g., o	cobbles, ston	Surface Stones (e.g., cobbles, stones, boulders, etc.)	Slope (%)	
	Description of Location:	cation:				1						
5	Soil Parent Material:	ial:										
					Landform			Position on	Landscape (Position on Landscape (SU, SH, BS, FS, TS, Plain)	s, Plain)	
Э.	Distances from:	Open	Open Water Body	fe	feet	Drainage Way	Way	feet		Wetlands	feet	
		ш	Property Line	fe	feet Drink	Drinking Water Well	Well _	feet		Other	feet	
4.	4. Unsuitable Materials Present: 🕅 Yes 🔲 No	ls Present: 🕅		If Yes:	Disturbed Soil/Fill Material	Material		Weathered/Fractured Rock	actured Roc	k 🛛 Bedrock		
5.	Groundwater Observed:	erved: 🗌 Yes	N		If y	If yes:	Depth to \	Depth to Weeping in Hole	e a	Depth Standi	Depth Standing Water in Hole	
					Soil Log	Log						
	Dooth Jin Soil Horizon	n Soil Texture	Soil Matrix: Color-		Redoximorphic Features	es	Coarse % by	Coarse Fragments % by Volume	Soil	Soil		
5	epun (m) /Layer	(NSDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)		
	84 FILL		Concernent of the second s	3	Cnc : Dpl:	1)		, normality			
	132 C	5	10YR 5/3	1	Cnc: Dpl:	}	2	15	29			
					Cnc : Dol:							
					Cnc : Dpl:							
					Cnc : Dp l :							
					Cnc: Dpl:							

Additional Notes:

feet feet Depth Standing Water in Hole Other Slope (%) Longitude Position on Landscape (SU, SH, BS, FS, TS, Plain) Wetlands Other Bedrock Surface Stones (e.g., cobbles, stones, boulders, etc.) Consistence (Moist) C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area) Soil Latitude Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal (~ Weathered/Fractured Rock Structure X S S N Soil Depth to Weeping in Hole Cobbles & Stones Coarse Fragments % by Volume feet feet Weather 10 N.aion Gravel 5 Drinking Water Well Drainage Way -----Percent Disturbed Soil/Fill Material medite. 100000 Soil Log If yes: AND NO. Redoximorphic Features Time Landform Vegetation Color 11/7/22 Date Cnc : Dpt: Cnc : Dpl: Che : Che :: Che :: Chc Dp!: Dpl: اة feet feet Depth If Yes: (e.g., woodland, agricultural field, vacant lot, etc.) - Aller 1000 Soil Matrix: Color-Moist (Munsell) 104R 3/2 BYR 5/6 104R 5/3 4. Unsuitable Materials Present: 🔲 Yes 🕅 No Property Line Deep Observation Hole Number: TP-22-4 Hole # Open Water Body å Ø Groundwater Observed: 7es Soil Texture (NSDA) City/Town of Form 11 - S 2 5 5 Description of Location: Soil Parent Material: Soil Horizon /Layer Distances from: \leq 00 1. Land Use: Depth (in) 3 26 ~ <u>ي</u> *с*і. ц сі

Commonwealth of Massachusetts

Form 11 -- Soil Suitability Assessment for On-Site Sewage Disposal • Page 3 of 5

t5form11 revised 1-23-20.doc

Additional Notes:

feet feet Depth Standing Water in Hole Other Longitude Slope (%) Position on Landscape (SU, SH, BS, FS, TS, Plain) Wetlands Other □ Bedrock Surface Stones (e.g., cobbles, stones, boulders, etc.) Soil Consistence (Moist) C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area) Latitude Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal 4 mil Weathered/Fractured Rock Structure X С С S 5 Soil Depth to Weeping in Hole Cobbles & Stones Coarse Fragments % by Volume feet feet 5 Weather -Gravel -5 **Drinking Water Well** Drainage Way Disturbed Soil/Fill Material Percent 1 1000 and the second Soil Log lf yes: Redoximorphic Features Time Landform Vegetation Color 11/7/22 Date Cnc : Cnc : Cnc : Cnc : Cnc : Dpl: Cnc : Dpl: Dpl: ы Б ā Doi: feet feet Depth 138 If Yes: Conterno. (e.g., woodland, agricultural field, vacant lot, etc.) No. -Soil Matrix: Color-Moist (Munsell) 104R.5/3 10MU 6/1 10YP 3/2 104856 Deep Observation Hole Number: TP2-5 4. Unsuitable Materials Present: Open Water Body Property Line ۷ ⊠ Groundwater Observed:
Yes Soil Texture (USDA) COARSE Eity/Town of Form 11 - S 5 5 5 Description of Location: Soil Parent Material: Soil Horizon Additional Notes: /Layer Distances from: 5 5 \triangleleft 3 1. Land Use: Depth (in) 97 てて Z Z 2 ഹ с, сi

Commonwealth of Massachusetts

Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal • Page 3 of 5

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal Commonwealth of Massachusetts City/Town of Form 1

h GUARDES

c. on	-Site Revi	iew (minim	um of two hole	es requ	C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)	d pəsodo.	rimary	and resen	e dispos	tal area)		
Dee	p Observatio	n Hole Numb	Deep Observation Hole Number: TP-2D b	111	11/2/22	Timo	5	Weather		l atitudo		
1. Land Use:	d Use:			Date	-	2	5	Caulor		רמוותקס		
		, woodland, agric	(e.g., woodland, agricultural field, vacant lot,	ot, etc.)	Vegetation	- Warn for any other state of the	Surface	e Stones (e.g.,	cobbles, stor	Surface Stones (e.g., cobbles, stones, boulders, etc.)	Slope (%)	
Des	Description of Location:	ation:										
2. Soil	Soil Parent Material:	al:										
					Landform	L		Position on	Landscape (Position on Landscape (SU, SH, BS, FS, TS, Plain)	, Plain)	
3. Dist	Distances from:	Oper	Open Water Body _	J.	feet	Drainage Way	Way _	feet		Wetlands	feet	
		ц.	Property Line	e Į	feet Dri	Drinking Water Well	r Well	feet		Other	feet	
4. Unsui	4. Unsuitable Materials Present: 🔲 Yes 🕅 No	s Present:		lf Yes:	Disturbed Soil/Fill Material	l Material		Weathered/Fractured Rock	actured Roc	× 🛛 Bedrock		
5. Groi	Groundwater Observed: 7es	erved:□ Yes	°N ⊠		If	If yes:	Depth to	Depth to Weeping in Hole	 8	Depth Standin	Depth Standing Water in Hole	
					Soi	Soil Log						
Danth (in)	လိ	Š	Soil Matrix: Color-		Redoximorphic Features	Ires	Coarse % b)	Coarse Fragments % by Volume	Soil	Soil		
	", /Layer	(NSDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	Consistence (Moist)		
4	V	12	10-00 31-		Cnc :	1	Ì	i sulfare	S	4		
2	Ł	12	21-11/11	"water of	Dpl:		l		1 × 1	Citairy.		T
108	0	~	10YR 5/3	7	Cnc :	5	U L	2	35	*****		
					Cnc :	}	2		,			
					Dpl:							
					Cnc :							
					Dpl:							
					Cnc :							
					Dpt:							
					Cnc :							
					Dpl:							

t5form11 revised 1-23-20.doc

Commonwealth of Massachusetts City/Town of Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (minimum of two holes required at every proposed primary and reserve disposal area)

Det C	Deep Observation Hole Number: TP-22-7	n Hole Numb	en Observation Hole Number: TP-22-7		icquired an every proposed printiary and reserve disposal area,	id pasada	(minut			סמו מו כמ <i>ן</i>		
			Hole #	Date		Time	S	Weather		Latitude	Longitude	
1. Land Use:	, –	., woodland, agric	(e.g., woodland, agricultural field, vacant lot, etc.)	ot, etc.)	Vegetation		Surface	e Stones (e.g.,	cobbles, stor	Surface Stones (e.g., cobbles, stones, boulders, etc.)	Slope (%)	
Deć	Description of Location:	ation:										
2. Soil	Soil Parent Material:	al:										
					Landform	-		Position on	Landscape	Position on Landscape (SU, SH, BS, FS, TS, Plain)	S, Plain)	
3. Dist	Distances from:	Oper	Open Water Body	feet	et	Drainage Way	Way _	feet		Wetlands	s feet	
		ι μ	Property Line	feet		Drinking Water Well	Well	feet		Other	r feet	
4. Unsu	4. Unsuitable Materials Present: 🔲 Yes 🕅 No	SPresent:		If Yes: [Disturbed Soil/Fill Material	l Material		Weathered/Fractured Rock	actured Ro	ck 🗌 Bedrock	ŭ	
5. Gro	Groundwater Observed:	srved:□ Yes	N N		J.	If yes:	Depth to	Depth to Weeping in Hole	ا <u>و</u>	Depth Stanc	Depth Standing Water in Hole	
					Soil	Soil Log						
Donth (in)	soil Horizon	So	Soil Matrix: Color-		Redoximorphic Features	Ires	Coarse % b)	Coarse Fragments % by Volume	Soil	Soil	Otho-	
	"'/ /Layer	(NSDA)	Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Structure	(Moist)		
6	V	25	10 m 3/3		Cnc:	1			\leq	UL		
(Chc.							
14	2	5	10115 36	\	Dpi:	(-annua-	29			
041	(5	12 mm 51		Cnc :		(1	17	~~~		
001		1	51 -51 22	١	Dpl:		5	15	2	J		
					Cnc:							
					Dpl:							
					Cnc:							
					Dpl:							
					Cnc:							
					Dpl:							

Commonwealth of Massachusetts		
Soil Suitability	Assessment for On-Site Sewage Disposa	vage Disposal
D. Determination of High Groundwater Elevation		
1. Method Used (Choose one):	Obs. Hole #	Obs. Hole #
Depth to soil redoximorphic features	inches	inches
\Box Depth to observed standing water in observation hole	inches	inches
 Depth to adjusted seasonal high groundwater (S_h) (USGS methodology) 	inches	
Index Well Number Reading Date		
$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r]$		
Obs. Hole/Well# S。 Sr	OWc OWmax	د OWr Sh
E. Depth of Pervious Material		
1. Depth of Naturally Occurring Pervious Material \mathcal{SE}	SEE LOGS	
a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?	in all areas observed throug	hout the area proposed for the soil absorption system?
📈 Yes 🔲 No		
b. If yes, at what depth was it observed (exclude O, A, and E Horizons)?	Upper boundary: ino	Lower boundary: inches
c. If no, at what depth was impervious material observed?	Upper boundary: ^{inc}	Lower boundary:

F. Certification	
I certify that I am currently approved by the Depa above analysis has been performed by me consis that the results of my soil evaluation, as indicated 15.107.	I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.
Signature of Soil Evolutions	12/2/27
PAUL KIRCHNER, SEX14237	
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Name of Approving Authority Witness Note: In accordance with 310 CMR 15.018(2) this forn property owner with Percolation Test Form 12	Name of Approving Authority Witness Approving Authority Authority Authority Mithin 60 days of the date of field testing, and to the designer and the provent owner with Percolation Test Form 12
Field Diagrams: Use this area for field diagrams:	Ims: ppoperry LIVE
	Pri-te
	TEE BOXES FAILUAY (REAL) FAIRLAY
RANDA	Muer har a mar mar har har har hard
LL ROAD	FAIRWAY
<u> </u>	Rue. LINE
t5form11 revised 1-23-20.doc	Form 11 – Soil Suitability Assessment for On-Site Sewage Disposal • Page 5 of 5

Commonwealth of Massachusetts

City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

Α.	A. Facility Information				
	Stow Holdings LLC				
	Owner Name 58 Randall Road		Map R11, Parcel 2	5B-3	
	Street Address MA		Map/Lot # 01775		
	City State		Zip Code		
B.	B. Site Information				
1.	1. (Check one) 🛛 New Construction 🗌 Upgrade	Repair			
2.	2. Soil Survey Available? 🛛 Yes 🗌 No 🛛 If ye	S:		Web soil survey	253B, 254B
	Hinckley loamy sand, Merrimac fine sandy loam			Source	Soil Map Unit
		Limitations			
	outwash outv	wash terrace, outwash delta	. outwash plains. es	kers. moraines. kam	e terrace, kames
	Soil Parent material Land				,
3.	3. Surficial Geological Report Available? 🗹 Yes 🗌 No	If yes: Oliver		Sand and Gravel	
		Year Published/S	Source	Map Unit	
	Description of Geologic Map Unit:				
4.	4. Flood Rate Insurance Map Within a regulatory floodw	way? 🗌 Yes 📈 No			
5.	5. Within a velocity zone? 🗌 Yes 📈 No				
6.	6. Within a Mapped Wetland Area? 🗌 Yes 🛛 No	If yes, Mass0	GIS Wetland Data La	ayer: Wetland	Tuno
7.	7. Current Water Resource Conditions (USGS): 4/7/202	21	Range: 🗌 Above		
••		Day/ Year			
8.	8. Other references reviewed:				

Commonwealth of Massachusetts City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	h Hole Numb	er: TP-1	4/2/20	21	6:30a	m	30d cle	ar			
			Hole #	Date		Time		Weather		Latitude		Longitude:
1. Land	Use golf co	urse	ural field, vacant lot, e		grass, manic	ured wood	S	some	s (e.g., cobbles,			varies Slope (%)
				elC.)	vegetation			Surface Stone	es (e.g., cobbles,	stones, boulder	s, etc.)	Slope (%)
De	scription of Lo	ocation:										
2. Soil F	Parent Materia	al: outwash										
					La	andform		Posi	tion on Landscap	e (SU, SH, BS,	FS, TS)	
3. Dista	nces from:	Oper	n Water Body	fe	et	D	rainage W	/ay	feet	We	tlands	feet
		I	Property Line	fe	et	Drinkin	g Water W	Vell	feet	(Other	feet
4. Unsuita	able Material	s Present:] Yes 🔽 No	If Yes: [Disturbed S	Soil 🗌	Fill Materia	I 🗆 '	Weathered/Fra	ctured Rock	🗌 Ве	drock
5. Grou	ndwater Obse	erved: 💋 Yes	s 🗌 No		If yes	s:	Depth Wee	eping from Pit	-	Depth S	tanding V	Vater in Hole
						Soil Log	J					
		0		Red	oximorphic Fea	atures		Fragments		Soil		
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA	Soil Matrix: Color- Moist (Munsell)					Volume Cobbles &	Soil Structure			Other
		(00000		Depth	Color	Percent	Gravel	Stones		(Moist)		
10										_		
12	A	SL	10YR 3/3	-	-	-	-	-	М	F		
20	В	LS	10YR 5/6						N.4	F		
20	D	13	101 K 5/0	-	-	-	-	-	М	Г		
42	C1	Sand	10YR 5/3	-	-	_	_	_	SG	L		
12	01	Cana	101110,0							-		
84	C2	Coarse S	10YR 4/2	42	high/low	2	-	-	SG	L		
					<u> </u>							

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-2	4/	2/2021						
			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descri	iption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	ces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	i nds fe	et
		Proper	ty Line	feet	C	rinking W	/ater Well	feet	Ot	her fe	et
4. Unsuital Material			No If Ves	🗌 Distu	rhed Soil [torial		Fractured Rock		
	-		s 🛛 No								Standing Water in Hole
							j		5	'	5
	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments / Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
12	A	SL	10YR 3/3	-	-	-	-	-	М	F	
24	В	LS	10YR 5/6	-	-	-	-	-	М	F	
48	C1	S	10YR 4/2	-	-	-	-	-	SG	L	
54	C2	Fine S	10YR 5/3	48	high/low	2	-	-	SG	L	
120	C3	S	10YR 4/2	-	-	-	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-3	4/	2/2021						
			Hole #	Da	ate	Time	W	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descri	ption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	ces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	i nds fe	et
		Proper	ty Line	feet	C	rinking W	/ater Well	feet	Ot	her fe	et
4. Unsuital Material		Ves 🗸	No If Yes [.]	🗌 Distu	rbed Soil (☐ Fill Mat	terial	Weathered/	Fractured Rock		
			s 🛛 No								Standing Water in Hole
							j oil Log	_ ' '	5	'	5
	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
12	A	SL	10YR 3/3	-	-	-	-	-	М	F	
24	В	LS	10YR 5/6	-	-	-	-	-	М	F	
84	C1	S	10YR 4/2	-	-	-	-	-	SG	L	
96	C2	Fine S	10YR 5/3	84	high/low	2	-	-	SG	L	
120	C3	S	10YR 4/2	-	-	-	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-4	4/	/2/2021						
•			Hole #	Da	ate	Time	W	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, vad	cant lot, etc	c.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descri	ption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	ces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	nds fe	et
		Proper	ty Line	feet	I	Drinking W	/ater Well	feet	Ot	her fe	et
4. Unsuital			No If Yes:		rhad Cail		arial	Weathered/	Fractured Deals		
			s 🛛 No		rbed Soli						Standing Water in Hole
o. Groun							oil Log		gilomrik		
				Redo	ximorphic Fe		Coarse	Fragments		Soil	
Depth (in)	Soil Horizon /Layer	Soil Texture (USDA)	Soil Matrix: Color-Moist		-		-	/ Volume Cobbles &	Soil Structure	Consistence	Other
			(Munsell)	Depth	Color	Percent	Gravel	Stones		(Moist)	
12 A SL 10YR 3/3 M F											
24	В	LS	7.5YR 5/6	-	-	-	-	-	М	F	
120	С	S	7.5YR 4/4	-	-	-	10	15	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-5	4/	/2/2021						
•			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	c.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descri	ption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	ces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	nds fe	et
		Proper	ty Line	feet	I	Drinking W	ater Well	feet	Ot	her fe	et
4. Unsuita Material		∖Yes 🗸	No If Yes:	🗌 Distu	rbed Soil	Fill Mat	erial	Weathered	Fractured Rock	Bedrock	
			s 🛛 No								Standing Water in Hole
							il Log				
Darith (in)	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe	eatures		Fragments Volume	0 - 11 01	Soil	0/4
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
									М	F	
24	В	LS	10YR 5/6	-	-	-	-	-	М	F	
120	С	S	10YR 5/3	-	-	-	10	15	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Dee	o Observatio	n Hole Numl	ber: TP-6	4/	2/2021						
			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land	Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Desc	ription of Loca	ation:									
2. Soil	Parent Materia	al: ———					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Dista	inces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	i nds fe	et
		Proper	ty Line	feet	C	Drinking W	/ater Well	feet	Ot	her fe	et
4. Unsuit Materi		□ Yes 🗸	No If Yes [.]	🗌 Distu	rhed Soil	🗌 Fill Mat	terial	Weathered/	Fractured Rock		
	Indwater Obse										Standing Water in Hole
							j	_ ' '	5	'	5
	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments Volume		Soil	
Depth (ir	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
12 A SL 10YR 3/3								-	М	F	
24	В	LS	10YR 5/6	-	-	-	-	-	М	F	
102	C1	s	10YR 5/3	-	-	-	-	-	SG	L	
132	C2	Fine S	10YR 5/3	102	high/low	2	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observation	n Hole Numb	ber: TP-7	4/	2/2021						
-			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land	Use: (e.g.	, woodland, agr	cultural field, va	cant lot, etc	.) V	egetation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descr	iption of Loca	ation:									
2. Soil P	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distar	ices from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	inds fe	et
		Propert	y Line	feet		Drinking W	/ater Well	feet	Ot	her fe	et
4. Unsuita Materia				🗌 Dietu	rbed Soil		erial		Fractured Rock	Bedrock	
	idwater Obse				ibed Soli						Standing Water in Hole
							oil Log	<u> </u>	9	2 op o	
	Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic F		Coarse	Fragments Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
12	A	SL	10YR 5/3	-	-	-	-	-	М	F	
24	В	LS	10YR 5/6	-	-	-	-	-	М	F	
54	C1	Coarse S	10YR 5/3	-	-	-	5	5	SG	L	
72	C2	Med S	10YR 5/3	-	-	-	-	-	SG	L	
120	C3	Coarse S	10YR 5/3	-	-	-	5	5	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-8	4/	/2/2021						
			Hole #	Da	ate	Time	W	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	c.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descr	ption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	3. Distances from: Open Water Body feet Drainage Way feet Wetlands feet										
	Property Line feet Drinking Water Well feet Other feet										
	4. Unsuitable Materials Present: 🔲 Yes 🔽 No If Yes: 🔲 Disturbed Soil 📋 Fill Material 👘 Weathered/Fractured Rock 🔲 Bedrock										
	Groundwater Observed: Yes No No If yes: Depth Weeping from Pit Depth Standing Water in Hole										
o. oroun	Soil Log										
			Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments		Soil	
Depth (in)	Soil Horizon /Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	% by Gravel	/ Volume Cobbles & Stones	Soil Structure		Other
4	A	SL	10YR 3/3	-	-	-	-	-	М	F	
24	В	s	10YR 5/6	-	_	-	-	-	SG	L	
120	с	S	10YR 5/3				10	10	SG	1	
120	0	5	10111 3/3	-	-	-	10	10	30	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observatior	n Hole Numl	ber: TP-9	4/	2/2021						
-			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land l	Jse: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Ve	getation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descri	iption of Loca	ation:									
2. Soil Pa	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distan	. Distances from: Open Water Body feet Drainage Way feet Wetlands feet										
	Property Line feet Drinking Water Well feet Other feet										
	I. Unsuitable Materials Present: □ Yes 🔽 No If Yes: □ Disturbed Soil □ Fill Material □ Weathered/Fractured Rock □ Bedrock										
	Groundwater Observed: Yes V No No If yes: Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
	Soil Horizon	Soil Texture	re Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	il Structure Consistence (Moist)	Other
8	A	SL	10YR 3/3	-	-	-	-	-	М	F	
18	В	LS	10YR 5/6	-	-	-	-	-	М	F	
80	C1	Med S	10YR 5/3	-	-	-	-	-	SG	L	
120	C2	S	10YR 5/3	-	-	-	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Observation	n Hole Numl	ber: TP-10) 4/	/2/2021						
•			Hole #	Da	ate	Time	W	eather	Latitude		Longitude:
1. Land	Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	c.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Descr	iption of Loca	ation:									
2. Soil P	arent Materia	al: ———					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Distar	ices from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	inds fe	et
	Property Line feet Drinking Water Well feet Other feet										
4. Unsuita Materia			No If Ves	🗌 Distu	urbed Soil (torial		Fractured Rock		
	Materials Present: Yes No If Yes: Disturbed Soil Fill Material Weathered/Fractured Rock Bedrock Groundwater Observed: Yes No If yes: Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
	Soil Horizon	Soil Texture	ure Soil Matrix:	Redo	ximorphic Fe		Coarse	e Fragments y Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Soil Structure Consistence (Moist)	Other
12	А	SL	10YR 3/3	-	-	-	-	-	М	F	
24	в	LS	10YR 5/6	-	-	-	-	-	М	F	
72	C1	S	10YR 5/3	-	-	-	5	5	SG	L	
126	C2	Fine S	10YR 5/3	72	high/low	2	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Deep	Deep Observation Hole Number:			1 4/	2/2021						
			Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Land	Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Veg	etation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Desc	iption of Loca	ation:									
2. Soil F	arent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Dista	nces from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	inds fe	et
	Property Line feet Drinking Water Well feet Other feet										
	I. Unsuitable Materials Present: □ Yes 🔽 No If Yes: □ Disturbed Soil □ Fill Material □ Weathered/Fractured Rock □ Bedrock										
	Groundwater Observed: Ves No No No If yes: Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
	Soil Horizon	Soil Texture	exture Soil Matrix:	Redo	ximorphic Fe		Coarse	Fragments Volume		Soil	
Depth (in)	/Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	re Consistence (Moist)	Other
36	FILL										
52	В	LS	10YR 5/6	-	-	-	-	-	М	F	
84	C1	Fine S	10YR 5/3	52	high/low	2	-	-	SG	L	
96	C2	Coarse S	10YR 5/3	-	-	-	-	-	SG	L	

Commonwealth of Massachusetts

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

C. On-Site Review (*minimum of two holes required at every proposed primary and reserve disposal area*)

Dee	Deep Observation Hole Number:			2 4/	/2/2021						
	•		Hole #	Da	ate	Time	We	eather	Latitude		Longitude:
1. Lan	d Use: (e.g.	, woodland, agr	icultural field, va	cant lot, etc	.) Ve	egetation		Surface Stor	nes (e.g., cobbles,	stones, boulders,	etc.) Slope (%)
Des	cription of Loca	ation:									
2. Soil	Parent Materia	al:					Landform			Position on Lands	scape (SU, SH, BS, FS, TS)
3. Dist	ances from:	Open Wate	r Body	feet		Drair	nage Way	feet	Wetla	inds fe	et
	Property Line feet Drinking Water Well feet Other feet										
	l. Unsuitable Materials Present: 🗌 Yes 🔽 No If Yes: 🔲 Disturbed Soil 🔲 Fill Material 👘 🗍 Weathered/Fractured Rock 🔲 Bedrock										
	Groundwater Observed: Yes V No If yes: Depth Weeping from Pit Depth Standing Water in Hole										
	Soil Log										
	、 Soil Horizon	Soil Texture	Soil Matrix:	Redo	ximorphic F	eatures		Fragments Volume	0.11.04	Soil	01
Depth (i	n) /Layer	(USDA)	Color-Moist (Munsell)	Depth	Color	Percent	Gravel	Cobbles & Stones	Soil Structure	Consistence (Moist)	Other
6	A	SL	10YR 3/3	-	-	-	-	-	М	F	
18	В	LS	10YR 5/6	-	-	-	-	-	М	F	
126	С	Coarse S	10YR 5/3	-	-	-	-	-	SG	L	

Commonwealth of Massachusetts City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

D. Determination of High Groundwater Elevation

1.	Method Used:		Obs. Hole #	Obs. I	Hole #		
	Depth observed standing water in o	observation hole	inches		inches		
	Depth weeping from side of observ	ation hole	inches		_inches		
	Depth to soil redoximorphic feature	s (mottles)	inches		inches	SEE LOGS	
	Depth to adjusted seasonal high gr (USGS methodology)	oundwater (S _h)	inches		_inches		
	Index Well Number	Reading Date					
	$S_h = S_c - [S_r \times (OW_c - OW_{max})/OW_r$]					
	Obs. Hole/Well# S _c	S _r	OW _c	OW _{max}	OW _r	S _h	•
2. E	Estimated Depth to High Groundwater:	inches					

E. Depth of Pervious Material

1. Depth of Naturally Occurring Pervious Material

SEE LOGS

a.	Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil	absorption
sys	stem?	

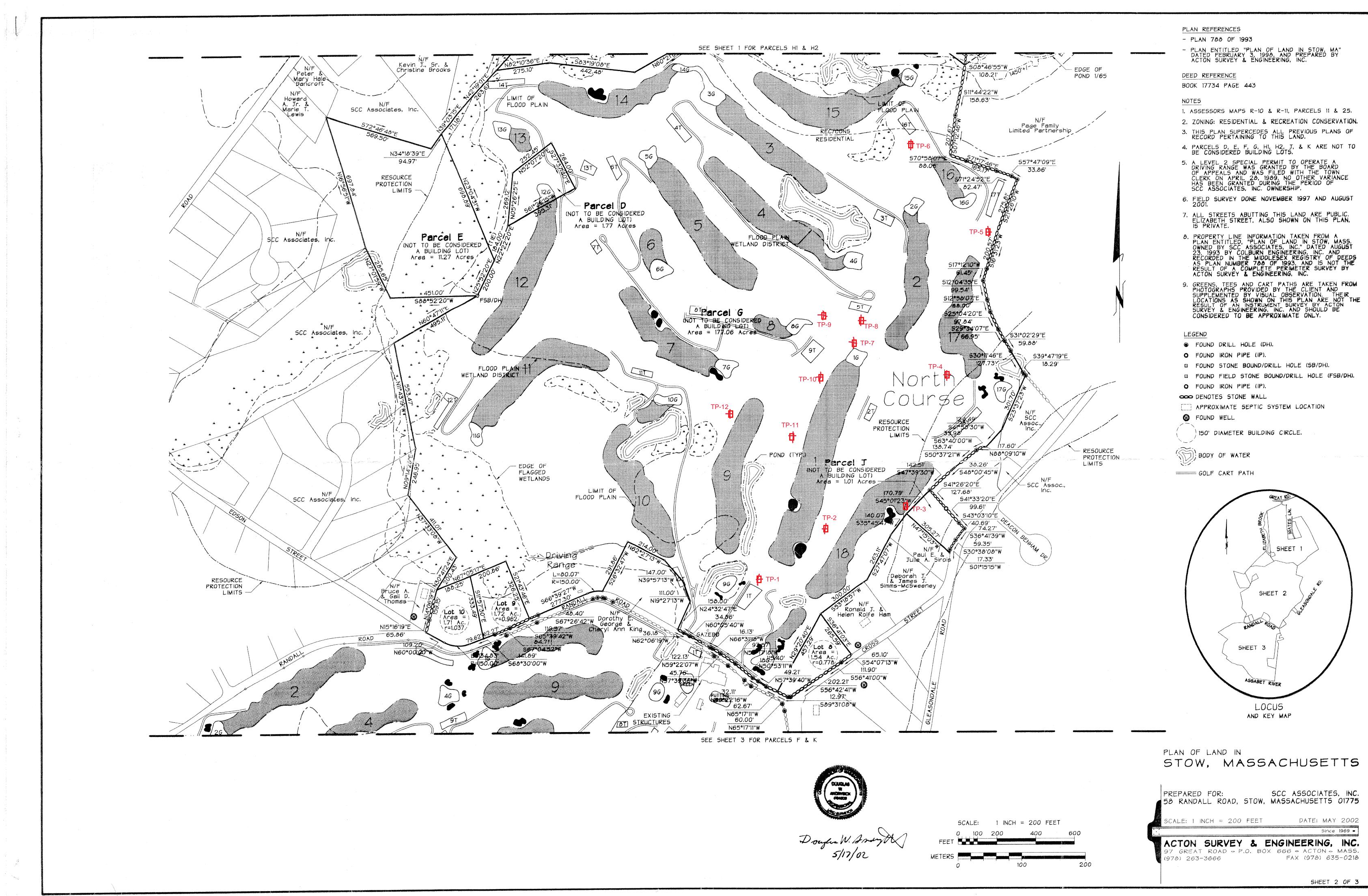
🗹 Yes 🗌 No

b.	If yes, at what depth was it observed (exclude A and O	Upper boundary:		Lower boundary:	
Ho	rizons)?		inches		inches
C.	If no, at what depth was impervious material observed?	Upper boundary:		Lower boundary:	
			inches		inches

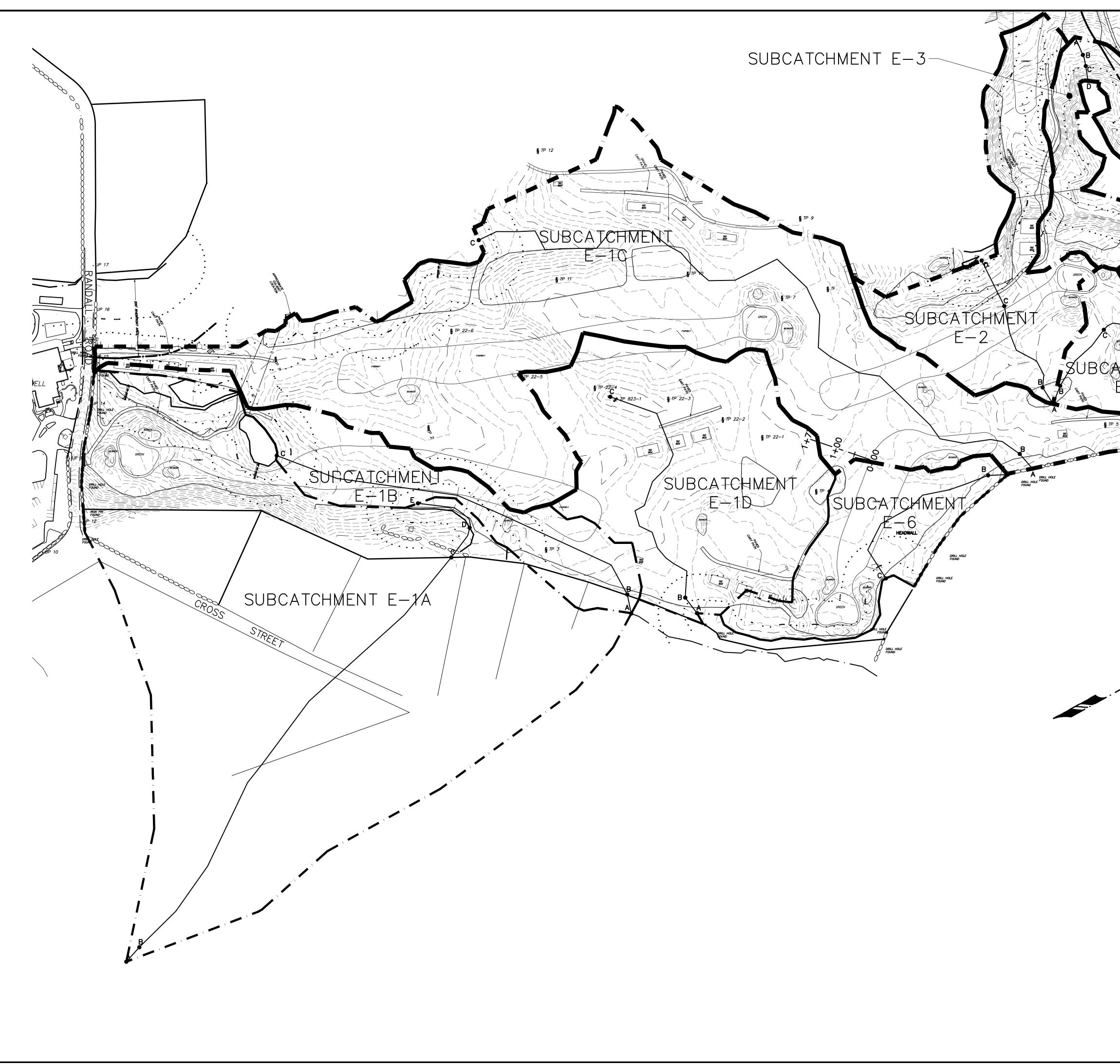
Commonwealth of Massachusetts City/Town of

Form 11 - Soil Suitability Assessment for On-Site Sewage Disposal

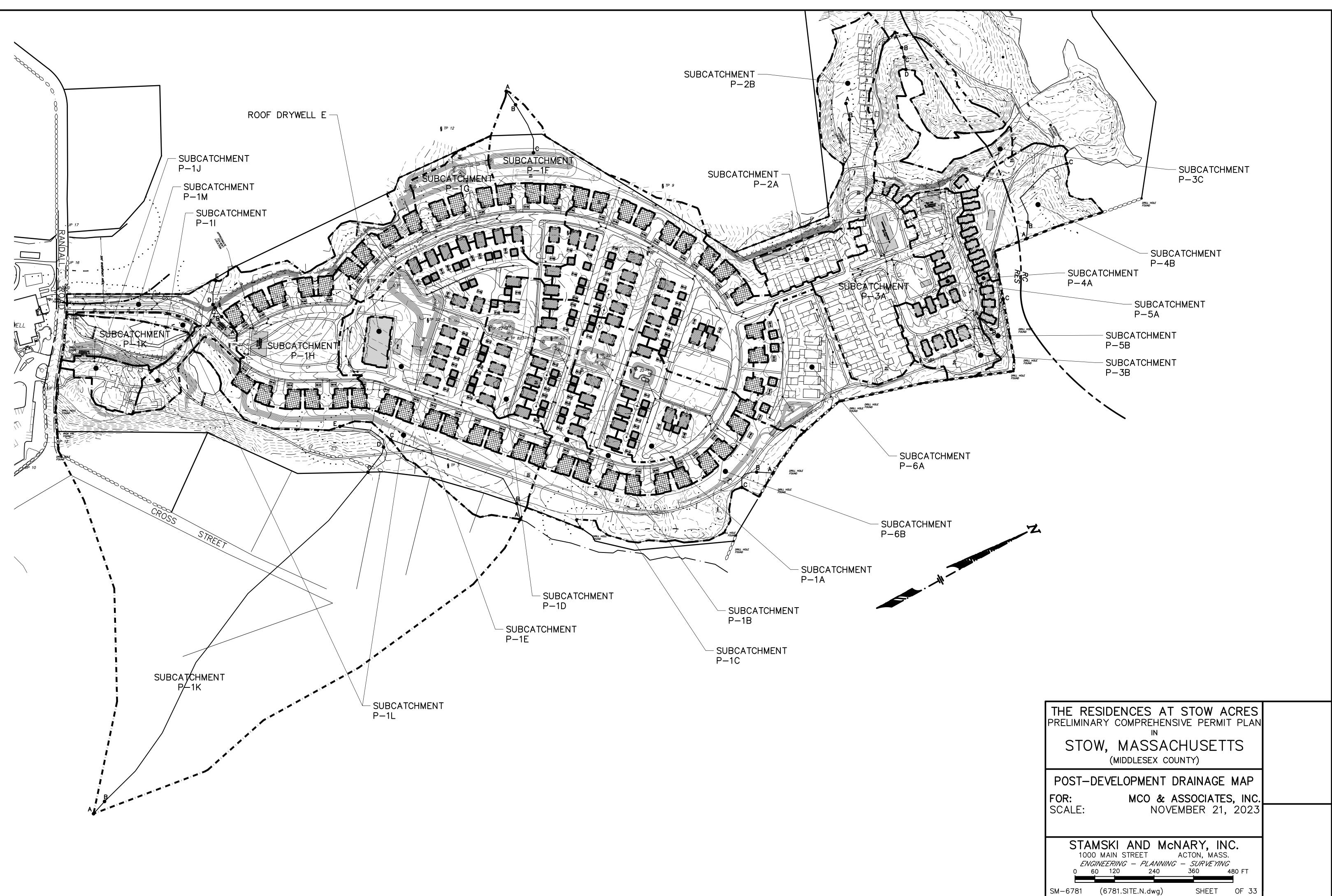
F. Certification


I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Cal him	4/9/2021
Signature of Soil Evaluator	Date
Paul Kirchner, SE 14237	7/1/2021
Typed or Printed Name of Soil Evaluator / License #	Expiration Date of License
Name of Approving Authority Witness	Approving Authority


Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Field Diagrams: Use this area for field diagrams:


SEE ATTACHED

Drainage Maps

	A CONTRACTOR OF	
CEHING BUILDER CONTRACTOR DE LA CONTRACT		
	THE RESIDENCES AT STOW ACRES PRELIMINARY COMPREHENSIVE PERMIT PLAN IN STOW, MASSACHUSETTS (MIDDLESEX COUNTY) PRE-DEVELOPMENT DRAINAGE MAP FOR: MCO & ASSOCIATES, INC. SCALE: NOVEMBER 21, 2023 STAMSKI AND MCNARY, INC. 1000 MAIN STREET ACTON, MASS. ENGINEERING - PLANNING - SURVEYING 0 60 120 240 360 480 FT SM-6781 (6781.SITE.N.dwg) SHEET OF 33	

Stormwater Operation and Maintenance Manual

Stormwater Operation and Maintenance Manual

For

The Residences at Stow Acres Stow, MA

December 12, 2023

Stamski And McNary, Inc.

Engineering - Planning – Surveying 1000 Main Street: Acton, MA 01720 (978) 263-8585 www.stamskiandmcnary.com

SM-6781

Table of Contents

Long Term Operation and Maintenance Plan

Operation and Maintenance Sample Inspection Log

Long Term Operation and Maintenance Plan

Schedule for Inspection and Maintenance:

Street Sweeping:

The pavement shall be swept of all sediment once in the spring and once in the fall.

Infiltration Basin and Sediment Forebay:

During construction, side slopes of the basin shall be inspected for erosion. All eroded areas shall receive 6" of loam and shall be reseeded per the design plan. During the first year after construction, inspection shall be conducted monthly. Areas of continued erosion should be stabilized with crushed stone. The basin shall be cleaned upon the accumulation of 6 inches of sediment during construction. The basin shall be cleaned upon the completion of construction.

During the first three years after construction, the basin shall be inspected during the growing and nongrowing season, twice per year. Data gathered during inspections should be recorded, mapped, and assessed.

At a minimum, inspect the sediment forebay monthly, and clean it out at least 4 times per year. After removing sediment, replace any vegetation damaged during the clean-out by either reseeding or resodding. When reseeding, incorporate practices such as hydroseeding with a tackifier, blanket, or similar practice to ensure that no scour occurs in the forebay while the seeds germinate and develop roots.

At least twice per year, mow the buffer area, side slope, and bottom of the Infiltration Basin and Sediment Forebay.

Subsurface Chambers:

Inspect the roof drywell and subsurface chamber after every major storm event via the inspection port for the first few months to ensure proper stabilization and function. Thereafter, inspect at least once per year. Water levels should be recorded over several days to check chamber drainage. Also, mosquito controls may be necessary.

Isolator Rows:

Inspect the isolator row after every major storm for the first few months after construction to ensure proper stabilization and function. Thereafter, inspect and clean at least twice per year. Water levels should be recorded over several days to check the structures drainage. Mosquito controls may be necessary. If at the time of inspection the depth of sediment within the isolator row exceeds 4 inches, a clean-out shall be performed. Cleaning the isolator row involves using the jetvac process that flushes water through the system with sediment collecting in the manhole. Flush water through the system until backflush water is clean. Vacuum manhole as needed.

Deep Sump Hooded Catch Basins and Manholes:

During construction, catch basin grates shall be wrapped with filter fabric. Catch basins shall be cleaned upon the completion of construction. After construction, the deep sumps for all catch basins and drain manholes shall be inspected four times per year and cleaned four times per year. Sediment removed shall be disposed of in accordance with applicable local, state, and federal guidelines and regulations. The depth of sediment in a basin shall not exceed a depth of 18 inches as determined by probing with a stick. If the stick hits the bottom within 30 inches of the water level, more than 18 inches of sediment has accumulated and must be removed. Licensed persons should remove and dispose of the contents of the sump in accordance with applicable regulations.

Flared Ends:

The flared end shall be inspected annually. The flared end shall be inspected for excessive sediment buildup. If appreciable amounts of sediment are observed, it shall be removed.

Emergency Contacts:

In the event of a hazardous materials spill on the site the following parties shall be contacted: Stow Fire Department: ph: 978-897-4537

Records:

The Responsible Party shall maintain an inspection log of all elements of the storm water management plan. The Responsible Party shall maintain a maintenance log documenting the inspection and maintenance of the drainage structures under his control. A copy of the erosion control and storm water maintenance plan and inspection logs shall be kept onsite at all times.

Inspections:

Members of the Maynard Planning Board and Conservation Commission or their designee shall be allowed to enter the property at reasonable times and in a reasonable manner for the purposes of inspection in accordance with the Town's Stormwater Regulations.

Responsibility Party:

The Applicant shall be responsible for all inspection and maintenance of the items included in the Manual during construction and after construction.

Budget:

The estimated annual operation and maintenance budget is \$5,000.

Name: _____

Signature: _____

Date: _____

Operation and Maintenance Sample Inspection Log

The Residences at Stow Acres

Operation and Maintenance Inspection Log

	Year:		
Inspection Items: Street Sweeping Catch Basin Infiltration Basin Sediment Forebay Subsurface Chambers		<u>Frequency:</u> Two times per year Four times per year Two times per year Monthly Two times per year	r
Street Sweeping:			
Previous Inspection Date: Inspection Date: Inspector Name: Comments:			
Action Required:			
Catch Basin:			
Previous Inspection Date: Inspection Date: Inspector Name: Sediment Depth: Comments:			(Remove if depth greater than 18")
Action Required:			
Infiltration Basin:			
Previous Inspection Date: Inspection Date: Inspector Name: Sediment Depth: Erosion in Basin: Outlet Structure: Comments:			
Action Required:			

Sediment Forebay:	
Previous Inspection Date:	
Inspection Date:	
Inspector Name:	
Sediment Depth:	(Remove if depth is between 3"-6")
Comments:	
Action Required:	
Subsurface Chambers:	
Previous Inspection Date:	
Inspection Date:	
Inspector Name:	
Comments:	
Action Required:	